Principles and Applications

Larry Jeffus

WELDINGPrinciples and Applications EIGHTH EDITION

Larry Jeffus

This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. The publisher reserves the right to remove content from this title at any time if subsequent rights restrictions require it. For valuable information on pricing, previous editions, changes to current editions, and alternate formats, please visit <u>www.cengage.com/highered</u> to search by ISBN#, author, title, or keyword for materials in your areas of interest.

Important Notice: Media content referenced within the product description or the product text may not be available in the eBook version.

CENGAGE Learning

Welding: Principles and Applications, 8e Author(s): Larry Jeffus

SVP, GM Skills & Global Product Management: Dawn Gerrain

Product Director: Matt Seeley

Product Team Manager: Erin Brennan

Associate Product Manager: Nicole Sgueglia

Senior Director, Development: Marah Bellegarde

Senior Product Development Manager: Larry Main

Senior Content Developer: Sharon Chambliss

Product Assistant: Maria Garguilo

Vice President, Marketing Services: Jennifer Ann Baker

Marketing Director: Michele McTighe

Marketing Manager: Jonathan Sheehan

Marketing Coordinator: Andrew Ouimet

Senior Production Director: Wendy Troeger

Production Director: Andrew Crouth

Senior Content Project Manager: Betsy Hough

Senior Art Director: Benjamin Gleeksman Software Development Manager: Pavan K. Ethakota

Cover image(s): Larry Jeffus

© 2017, 2012, 2008, 2004, 1999, 1988 Cengage Learning WCN: 02-200-203

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced or distributed in any form or by any means, except as permitted by U.S. copyright law, without the prior written permission of the copyright owner.

> For product information and technology assistance, contact us at Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all requests online at **www.cengage.com/permissions**. Further permissions questions can be e-mailed to **permissionrequest@cengage.com**

Library of Congress Control Number: 201594388 Book Only ISBN: 978-1-3054-9469-5

Cengage Learning

20 Channel Center Street Boston, MA 02210 USA

Cengage Learning is a leading provider of customized learning solutions with employees residing in nearly 40 different countries and sales in more than 125 countries around the world. Find your local representative at **www.cengage.com**.

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

To learn more about Cengage Learning, visit **www.cengage.com** Purchase any of our products at your local college store or at our preferred online store **www.cengagebrain.com**

Notice to the Reader

Publisher does not warrant or guarantee any of the products described herein or perform any independent analysis in connection with any of the product information contained herein. Publisher does not assume, and expressly disclaims, any obligation to obtain and include information other than that provided to it by the manufacturer. The reader is expressly warned to consider and adopt all safety precautions that might be indicated by the activities described herein and to avoid all potential hazards. By following the instructions contained herein, the reader willingly assumes all risks in connection with such instructions. The publisher makes no representations or warranties of any kind, including but not limited to, the warranties of fitness for particular purpose or merchantability, nor are any such representations implied with respect to the material set forth herein, and the publisher takes no responsibility with respect to such material. The publisher shall not be liable for any special, consequential, or exemplary damages resulting, in whole or part, from the readers' use of, or reliance upon, this material.

Printed in the United States of America Print Number: 01 Print Year: 2015 This book is dedicated to two very special people—my daughters Wendy and Amy.

Preface	xvi
Features of the Text	xix
Acknowledgments	xxi
About the Author	xxiii
Index of Experiments and Practices	XXV
SECTION 1 Introduction	01
Chapter 1 Introduction to Welding	03
Objectives	3
Key Terms	3
Introduction	3
Welding Terminology	5
Welding Defined	5
Uses of Welding	5
Welding and Cutting Processes	7
Welding Processes	7
Oxyacetylene Welding, Brazing, and Cutting	7
Shielded Metal Arc Welding (SMAW)	7
Gas Tungsten Arc Welding (GTAW)	7 9
Gas Metal Arc Welding (GMAW) Flux Cored Arc Welding (FCAW)	9 10
Thermal Cutting Processes	10
Oxyfuel Gas Cutting	10
Plasma Arc Cutting	10
Selection of the Joining Process	11
Occupational Opportunities in Welding	12
Training for Welding Occupations	13
Job-Related Skills	14
Beginning a Welding Career	14
Job Prospects	14
AWS SENSE Welder Certification	14
Level I Qualification Procedures	15
Practical Knowledge Qualification—	
Written Test	15
Performance Qualification—	
Workmanship Samples and Test Plates	15
Thermal Cutting Principles and Practices	15
Welding Inspection and Testing Principles	1.0
and Practices	16
Level II Advanced Welder Qualification SkillsUSA	16 16
SkillsusA Experiments and Practices	16 16
Welding Video Series	10
Metric Units	17
Summary	19
Review	19

Chapter 2 Safety in Welding	21
Objectives	21
Key Terms	21
Introduction	21
Burn Classification	22
First-Degree Burns	22
Second-Degree Burns	22
Third-Degree Burns	22
Burns Caused by Light	23
Personal Protection Equipment (PPE)	24
General Work Clothing	24
Special Protective Clothing	25
Face and Eye Protection	27
Goggles	27
Full Face Shield	27
Welding Helmets	27
Auto Darkening Welding Helmets	28
Shop Noise	28
Respiratory Protection	20
Ventilation	31
Safety Data Sheets (SDSs)	32
Handling and Storing Cylinders	32
Securing Gas Cylinders	33
Storage Areas	33
Cylinders with Valve Protection Caps	33
General Precautions	33
Acetylene	34
Fire Protection	34
Fire Watch	34
	34
Fire Extinguishers	35
Location of Fire Extinguishers	35
Using Fire Extinguishers	
Equipment Maintenance	36
Hoses	36
Work Area Cleaning	36
Hand Tools	37
Hand Tool Safety	37
Hammer Safety	38
Electrical Safety	38
Electrical Safety Systems	40
Voltage Warnings	40
Extension Cords	41
Safety Rules for Portable Electric Tools	42
Power Tools	42
Grinders	42
Drills	43
Metal Cutting Machines	44
Material Handling	45
Lifting	45

45
45
45
45
46
47
47

SECTION 2 Shielded Metal Arc Welding

Chapter 3	Shielded Me	etal Arc
Equipment	, Setup, and	Operation
Objectives		
Key Terms		
Introduction		

Introduction	
Welding Current	
Electrical Measurement	
Temperature and Heat	
SMA Welding Arc Temperature	
SMA Welding Arc Heat	
Types of Welding Currents	
Types of Welding Power	
Supplies (Machines)	
Open Circuit Voltage	
Operating Voltage	
Arc Blow	
Types of Power Sources	
Movable Coil or Core	
Inverter	
Generator-Type and Alternator-Type Welders	
Routine Maintenance	
Converting AC to DC	
Duty Cycle	
Welder Accessories	
Welding Cables	
Electrode Holders	
Work Clamps	
Equipment Setup	
Summary	
Review	

Chapter 4 Shielded Metal Arc Welding

of Plate

Objectives
Key Terms
Introduction
Effect of Current Settings that Are Too Low
or Too High
Too Low of a Current Setting
Too High of a Current Setting
Experiments
Electrode Size and Heat
Arc Length

Travel Angle, Electrode Angle and	
Work Angle	75
Leading Angle	75
Perpendicular Angle	76
Trailing Angle	76
Electrode Manipulation	76
Positioning of the Welder and the Plate	79
Practice Welds	80
Electrodes	80
F3 E6010 and E6011 Electrodes	80
F2 E6012 and E6013 Electrodes	80
F4 E7016 and E7018 Electrodes	80
Electrode Selection	80
Stringer Beads	81
Square Butt Joint	83
Edge Weld	87
Outside Corner Joint	91
Lap Joint	94
Tee Joint	97
Summary	100
Review	100

Chapter 5 Shielded Metal Arc Welding

of Pipe	101
Objectives	101
Key Terms	101
Introduction	101
Pipe and Tubing	103
Pipe Specifications	103
Tubing Specifications	103
Pipe Applications	104
Tubing Applications	104
Advantages of Welded Pipe	104
Strength	104
Less Maintenance Required	104
Longer Lasting	106
Smoother Flow	106
Lighter Weight	106
Preparation and Fit-up	106
Practice Welds	108
Weld Standards	109
Weld Passes	109
Root Weld Pass	109
Hot Weld Pass	110
Filler Weld Pass	110
Cover Weld Pass	111
1G Horizontal Rolled Position	111
AWS SENSE Certification Test 1G	116
2G Vertical Fixed Position	116
AWS SENSE Certification Test 1G	117
5G Horizontal Fixed Position	117
AWS SENSE Certification Test 5G	119
6G 45° Inclined Position	119
AWS SENSE Certification Test 6G	120
Summary	121
Review	121

Chapter 6 Shielded Metal Arc Welding AWS SENSE Certification 122

	122
Objectives	122
Key Terms	122
Introduction	122
Root Pass	123
Hot Pass	127
Filler Pass	129
Cover Pass	130
Plate Preparation	130
Restarting a Weld Bead	133
Preheating and Postheating	133
AWS Workmanship Standard for Preparation	
of Base Metal	134
AWS Visual Inspection Criteria	135
Preparing Specimens	
for Bend Testing	135
WS Specimen Preparation Criteria	135
Preparation	135
Testing	135
AWS Acceptance Criteria for Bend Test	137
Poor Fit-Up	146
Summary	147
Review	147

SECTION 3 Cutting and Gouging

Chapter 7 Flame Cutting	151
Objectives	151
Key Terms	151
Introduction	152
Metals Cut by the Oxyfuel Process	152
The Chemistry of a Cut	152
Eye Protection for Flame Cutting	152
Cutting Torches	153
Cutting Tips	154
Pressure Regulators	160
Regulator Operation	160
Regulator Gauges	161
Regulator Safety Pressure Release Device	161
Cylinder and Regulator Fittings	161
Regulator Safety Precautions	163
Regulator Care and Use	164
Backfires	165
Flashbacks	165
Reverse Flow and Flashback Valves	165
Care of the Reverse Flow Valve	
and Flashback Arrestor	167
Hoses and Fittings	167
Hose Care and Use	167
Leak Detection	168
Oxyfuel Cutting, Setup,	
and Operation	168
Torch Tip Care and Use	168
Hand Cutting	171

Contents

Layout	174
Selecting the Correct Tip and Setting	
the Pressure	175
The Physics of a Cut	177
Slag	178
Plate Cutting	180
Cutting Table	180
Torch Guides	180
Distortion	182
Cutting Applications	183
Pipe Cutting	184
Summary	188
Review	188
Chapter 8 Plasma Arc Cutting	190
Objectives	190
Key Terms	190
Introduction	
	190
Plasma	191
Arc Plasma	192
Plasma Torch	192
Torch Body	192
Torch Head	192
Power Switch	193
Torch Parts Commonly Serviced	193
Hoses and Power Cables	195
Gas Hoses	195
Power Cable	197
Coolant System	197
	197
	197
Coolant Coolant Hoses Control Wire Compressed Air	198
	198
Power Requirements	199
Voltage	199
Amperage	199
Watts	199
Heat Input	199
Distortion	199
Applications	200
Cutting Speed	200
Metals	200
Torch Standoff Distance	200
	201
Starting Methods	
Kerf	203
Gases	205
Stack Cutting	206
Dross	206
Machine Cutting	206
Water Tables	207
Manual Cutting	207
Setup	208
Safety	209
Straight Cuts	209
Piercing	205
	211
Plasma Arc Gouging	
Cutting Round Stock	215

149

uipment, Setup, and Operation	23
napter 10 Gas Metal Arc Welding	23
ECTION 4 Gas Shielded Welding	23
	20
Review	23
Summary	23
Applications	23
Applications Arc Cutting Electrodes	23 23
Water Jet Cutting	23
Safety Water let Cutting	23
Applications	23
Oxygen Lance Cutting	23
U-Grooves	22
Safety	22
Application	22
Air Supply	22
Power Sources	22
Electrodes	22
Manual Torch Design	22
Air Carbon Arc Cutting (CAC-A)	22
Laser Equipment	22
Arc Welding	22
Laser Beam Welding with Gas Tungsten	
Surfacing	22
Laser Beam with Gas Metal Arc Welding	
Arc Welding	22
Laser Beam Welding with Gas Metal	
Hybrid Laser Process	22
Laser Beam Welding	22
Laser Beam Drilling	22
Laser Beam Cutting	22
Applications	22
Gas Laser	22
Solid State Lasers	22
Laser Types	22
Lasers	22
Drilling (LBD)	22
Laser Beam Cutting (LBC) and Laser Beam	_
Introduction	21
Key Terms	21
Objectives	21
napter 9 Related Cutting Processes	21
Herett.	2
Review	21
Summary Review	2 ⁻ 2 ⁻

Objectives	239
Key Terms	239
Introduction	240
Weld Metal Transfer Methods	242
Short-Circuiting Transfer GMAW-S	242
Globular Transfer	243

Axial Spray Metal Transfer	243
Pulsed-Arc Metal Transfer	245
Pulsed-Arc Metal Transfer	
Current Cycle	246
Modulated Current	
Metal Transfer	248
The Modulated Current Process	. 248
Advantages of Modulated Current and Pulsed	
Metal Transfer	248
Buried-Arc Transfer	250
GMAW Filler Metal Specifications	250
Wire Melting and Deposition Rates	251
Welding Power Supplies	251
GMA Welding Machines	251 252
Speed of the Wire Electrode	252 252
Power Supplies for Short-Circuiting Transfer	252 253
Shielding Gas	255 254
Argon Argon Cas Plands	254 254
Argon Gas Blends Helium	254
Carbon Dioxide	255
Nitrogen	255
Power Settings	255
Weave Pattern	255
Travel Speed	256
Electrode Extension	256
Gun Angle	256
Forehand/Perpendicular/Backhand Welding	250
Metal Core Electrodes for GMA Welding	258
Equipment	259
Power Source	260
Electrode (Wire) Feed Unit	260
Electrode Conduit	262
Welding Gun	263
GMA Spot Welding	264
Summary	266
Review	266
Chapter 11 Gas Metal Arc Welding	267
	267
Objectives Key Terms	267
Introduction	267
Setup	268
Wire-Feed Speed	200
Gas Density and Flow Rates	274
Arc-Voltage and Amperage Characteristics	275
Electrode Extension	275
Welding Gun Angle	278
Effect of Shielding Gas on Welding	279
Practices	281
Metal Preparation	282
Flat Position, 1G and 1F Positions	283
Vertical Up 3G and 3F Positions	287
Vertical Down 3G and 3F Positions	288
Horizontal 2G and 2F Positions	289
Overhead 4G and 4F Positions	290

viii

Globular Metal Transfer, 1G Position	293
Axial Spray	296
Summary	297
Review	297

298

Chapter 12 Flux Cored Arc Welding Equipment, Setup, and Operation

Objectives	298
Key Terms	298
Introduction	299
Principles of Operation	301
Flux Core	301
Gas Formers	302
Slag	302
Equipment	302
Power Supply	302
FCA Welding Guns	302
Electrode Feed	303
Advantages	303
Limitations	304
FCAW Electrodes	304
Electrode Cast and Helix	306
FCA Welding Electrode Flux	306
Types of FCAW Fluxes	308
Flux Cored Steel Electrode Identification	309
Mild Steel	309
Stainless Steel Electrodes	309
Metal Cored Steel Electrode Identification	n 309
Care of Flux Core Electrodes	311
Shielding Gas	311
Welding Techniques	312
Gun Angle	312
Forehand/Perpendicular/Backhand Techniqu	
Advantages of the Forehand Technique	313
Disadvantages of the Forehand Techniqu	ue 314
Advantages of the Perpendicular Technic	
Disadvantages of the Perpendicular Tech	
Advantages of the Backhand Technique	314
Disadvantages of the Backhand Techniqu	ue 314
Travel Speed	314
Mode of Metal Transfer	315
Spray Transfer—FCAW-G	315
Globular Transfer—FCAW-G	315
Electrode Extension	316
Porosity	316
Troubleshooting FCA Welding	317
Summary	318
Review	319

Chapter 13	Flux Cored	Arc Welding
-------------------	------------	-------------

Objectives	320
Key Terms	320
Introduction	320
Practices	321
Flat-Position Welds	324
Square-Groove Welds	326

Contents

V-Groove and Bevel-Groove Welds	327
Root Pass	328
Filler Pass	329
Cover Pass	329
Fillet Welds	330
Vertical Welds	333
Horizontal Welds	336
Overhead-Position Welds	340
Thin-Gauge Welding	341
Plug Welds	344
Summary	346
Review	346

Chapter 14 Gas Metal Arc and Flux

Cored Arc Welding of Pipe	348
Objectives	348
Key Terms	348
Introduction	348
Joint Preparation	349
End Preparation	349
Joint Fitup	349
Tack Welds	349
Root Pass	349
Hot Pass	350
Filler Pass	350
Cover Pass(es)	351
Visual Inspection	351
Practice Pipe Welds	351
Pipe to Plate Welds	351
Tack Welds	355
Root Pass	355
Hot Pass	355
Filler Pass(es)	355
Cover Pass	356
Summary	359
Review	359

Chapter 15 Gas Metal Arc and Flux Cored

Arc Welding AWS SENSE Certification	360
Objectives	360
Key Terms	360
Introduction	360
Practice Welds	360
Metal Preparation	361
Practice Weld Equipment and Consumables	361
Summary	388
Review	388

Chapter 16 Gas Tungsten Arc Welding Equipment, Setup, Operation, and Filler Metals

Objectives	389
Key Terms	389
Introduction	390

389

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

320

Tungsten
High Temperature
Good Conductor
Tungsten Erosion
Tungsten Electrode End Shape
Types of Tungsten Electrodes
Pure Tungsten, EWP
Thoriated Tungsten, EWTh-1 and EWTh-2
Zirconium Tungsten, EWZr-1
Cerium Tungsten, EWCe-2
Lanthanum Tungsten, EWLa-1.5
Rare Earth Tungsten, EWG
Shaping the Tungsten
Precision Machine Tungsten Grinder
Hand Grinding
Breaking and Remelting
Chemical Cleaning and Pointing
Pointing and Remelting
GTA Welding Equipment
Torches
Hoses
Nozzles
Gas Lens
Flowmeter
Types of Welding Current
DCEN
DCEP
AC
Electronic Controls of AC Welding Currents
EP and EN Time Control
Sine Wave Form Control
Frequency Control
Shielding Gases
Argon
Helium
Hydrogen
Nitrogen
Hot Start
Preflow
Postflow
Shielding Gas Flow Rate
Remote Controls
Summary
Review

Chapter 17	Gas Tungsten	Arc Welding
-------------------	---------------------	-------------

of Plate	414
Objectives	414
Key Terms	414
Introduction	415
Torch Angle	415
Filler Rod Manipulation	416
Tungsten Contamination	417
Current Setting	417
Experiments	418
Gas Flow	419

	IX
Practice Welds	420
Low Carbon and Mild Steels	420
Stainless Steel	421
Aluminum	422
Metal Preparation	422
Summary	439
Review	440

Chapter 18 Gas Tungsten Arc Welding

of Pipe	441
Objectives	441
Key Terms	441
Introduction	441
Practices	442
Joint Preparation	442
V-Groove	442
Joint Cleaning	442
Root	443
Incomplete Fusion	444
Concave Root Surface	445
Excessive Root Reinforcement	445
Root Contamination	445
Backing Gas	446
Purging	446
Filler Metal	447
Consumable Inserts	447
Cup Walking	449
Cup Walking Setup	449
Cup Walking Technique	450
Practice Welds	450
Hot Pass	453
Root Surface	453
Lack of Root Fusion	454
Filler Pass	457
Cover Pass	458
Summary	461
Review	461

Chapter 19 Gas Tungsten Arc Welding Plate

and Pipe AWS SENSE Certification	463
Objectives	463
Key Terms	463
Introduction	463
GTA Sheet Welds	463
GTA Tubing Welds	464
AWS SENSE GTA Sheet Practice Welds	464
Weld Inspection and Testing	464
Butt Joint Welds	464
Fillet Welds, Lap and Tee Joints	464
Tubing Welds	466
Mechanical, Destructive Testing	466
Filler Metal	466
Sheet Metal Practice Welds	467
Tubing and Pipe Practice Welds	479
Summary	484
Review	485

SECTION 5 Related Technologies 487

Chapter 20 Shop Math and Weld Cost	489
Objectives	489
Key Terms	489
Introduction	489
Shop Math	490
Types of Numbers	490
Whole Numbers	490
Decimal Fractions	490
Mixed Units	490
Fractions	490
General Math Rules	491
Letters, Numbers, and Symbols	492
Superscript and Subscripts	492
Equations and Formulas	492
Equations	492
Formulas	492
Mixed Units	493
Adding and Subtracting Mixed Units	493
Fractions	495
Finding the Fraction's Common Denominator	495
Reducing Fractions	496
Multiplying and Dividing Fractions	496
Converting Numbers	497
Converting Fractions to Decimals	497
Tolerances	497
Converting Decimals to Fractions	497
Conversion Charts	498
Angles	498
Adding and Subtracting Angles	499
Triangles	499
Right Triangle	499
Equilateral Triangle	500
Isosceles Triangle Perimeter	500 501
Area	501 501
Volume	501
Measuring	502
Welding Costs	502
Cost Estimation	503
Joint Design	504
Groove Welds	505
Fillet Welds	506
Weld Metal Cost	506
Cost of Electrodes, Wires, Gases, and Flux	507
Deposition Efficiency	507
Deposition Rate	508
Deposition Data Tables	508
Coated Electrodes	509
Efficiency of Flux Cored Wires	510
Efficiency of Solid Wire for GMAW	510
Efficiency of Solid Wires for SAW	511
Operating Factor	511
Labor and Overhead	514
Cost of Power	514

Other Useful Formulas	514
Bill of Materials	515
Invoice	516
Summary	517
Review	518

Chapter 21 Reading Technical

Drawings	520
Objectives	520
Key Terms	521
Introduction	521
Mechanical Drawings	521
Lines	523
Types of Drawings	523
Pictorial Drawings	523
Mechanical Drawings	524
Special Views	524
Dimensioning	525
Drawing Scale	527
Reading Mechanical Drawings	528
Sketching	528
Erasers and Erasing	532
Graph Paper	535
Computers and Drawings	538
Summary	541
Review	541

Cha	oter	22	Weld	ina	Joint	Design

and Welding Symbols	542
Objectives	542
Key Terms	542
Introduction	542
Weld Joint Design	543
Weld Joint Stresses	544
Welding Process	545
Edge Preparation	545
Joint Dimensions	545
Metal Thickness	545
Metal Type	547
Welding Position	547
Plate Welding Positions	548
Pipe Welding Positions	548
Code or Standards Requirements	548
Welder Skill	549
Acceptable Cost	549
Welding Symbols	549
Indicating Types of Welds	550
Weld Location	551
Location Significance of Arrow	551
Fillet Welds	552
Plug Welds	552
Spot Welds	553
Seam Welds	553
Groove Welds	553
Backing	556
Flanged Welds	557

Nondestructive Testing Symbols Summary Review	557 560 560
Chapter 23 Fabricating Techniques	
and Practices	561
Objectives	561
Key Terms	561
Introduction	561
Fabrication	562
Safety	562
Parts and Pieces	563
Preformed	563
Custom Fabrication	563
Layout	564
Nesting	569
Kerf Space	570
Material Shapes	573
Bill of Materials Form	574
Overall Tolerance	575
Assembly	576
Overall Dimensions and Thick Materials	578
Part Identification	578
Assembly Tools	578 581
Fitting Tack Welds	581
Welding	584
Arc Strikes	584
Finishing	585
Summary	585
Beview	586
	500

Chapter 24 Welding Codes

and Standards	587
Objectives	587
Key Terms	587
Introduction	587
Codes, Standards, Procedures, and Specifications	588
Welding Procedure Qualification	588
Welding Procedure	
Specification (WPS)	588
Qualifying the Welding Procedure Specification	588
Qualifying and Certifying	589
General Information	589
Summary	600
Review	601
Chapter 25 Testing and Inspection	602
Objectives	602
Key Terms	602
Introduction	602
Quality Control (QC)	603
Discontinuities and Defects	603
Porosity	603
Inclusions	605
Inadequate Joint Penetration	606

Incomplete Fusion	606
Arc Strikes	607
Overlap	607
Undercut	608
Crater Cracks	608
Underfill	609
Plate-Generated Problems	609
Lamination	609
Delamination	609
Lamellar Tears	610
Destructive Testing (DT)	610
Tensile Testing	610
Fatigue Testing	612
Shearing Strength Test	612
Welded Butt Joints	612
Nick-Break Test	612
Guided-Bend Test	612
Free-Bend Test	616
Alternate Bend	616
Fillet Weld Break Test	616
Testing by Etching	617
Impact Testing	618
Nondestructive Testing (NDT)	619
Visual Inspection (VT)	619
Penetrant Inspection (PT) Magnetic Particle Inspection (MT)	619 619
Radiographic Inspection	621
Ultrasonic Inspection	621
Leak Checking	625
Eddy Current Inspection (ET)	625
Hardness Testing	626
Summary	620
Review	627
	629
Chapter 26 Welding Metallurgy	
Objectives	629
Key Terms	629
Introduction	629
Heat, Temperature, and Energy	630
Heat	630
Temperature	631
Production of Metals	632
Steel Making	632
Iron Ore	632 633
Ingot Casting	633
Continuous Casting Metal Forming	633
Grain Structure	634
Mechanical Properties	634
Hardness	634
Brittleness	635
Ductility	635
Toughness	635
Strength	635
Other Mechanical Properties	636
Structure of Solid Matter	636
Crystalline Structures of Metal	637

xi

xii

Phase Diagrams	638
Lead-Tin Phase Diagram	638
Iron-Carbon Phase Diagram	639
Strengthening Mechanisms	642
Solid-Solution Hardening	642
Precipitation Hardening	643
Mechanical Mixtures of Phases	643
Quench, Temper, and Anneal	644
Quenching	644
Martensitic Reactions	645
Cold Work	648
Grain Size Control	648
Heat Treatments Associated with Welding	648
Preheat	648
Stress Relief, Process Annealing	649
Annealing	650
Normalizing	650
Time-Temperature-Transformation (TTT) Diagran	ns 650
Martensite	650
Bainite	651
Pearlite	651
TTT Diagrams	651
Thermal Effects Caused	
by Arc Welding	652
Heat-Affected Zone (HAZ)	652
Gases in Welding	654
Nitrogen	655
Oxygen	655
Carbon Dioxide	655
Hydrogen	655
Metallurgical Defects	656
Cold Cracking	656
Hot Cracking	656
Carbide Precipitation	657
Summary	658
Review	658
	000
Chapter 27 Weldability of Metals	660
Objectives	660
Key Terms	660
Introduction	660
Weldability	660
Thermal Cycling	661
Steel Classification and Identification	663
SAE Classification Systems	663
AISI Classification Systems	663
Unified Numbering System (UNS)	663
Carbon and Alloy Steels	663
Low-Carbon, Also Called Mild, Steel	663
Medium-Carbon Steel	665
High-Carbon Steel	665
Tool Steel	666
High-Manganese Steel	666
Low-Alloy, High-Tensile Strength Steels	666
Stainless Steels	666
Austenitic Stainless Steel	667
Ferritic Stainless Steel	667

Contents

Martensitic Stainless Steel	667
Chromium-Molybdenum Steel	668
Cast Iron	668
Preweld and Postweld Heating of Cast Iron	669
Practice Welding Cast Iron	670
Welding without Preheating or Postheating	671
Nonferrous Metals	673
Copper and Copper Alloys	673
Aluminum Weldability	673
Titanium	674
Magnesium	674
Repair Welding	674
Summary	677
Review	678
Neview	070
Chapter 29 Filler Motel Coloction	670
Chapter 28 Filler Metal Selection	679
Objectives	679
Key Terms	679
Introduction	679
Manufacturers' Electrode Information	680
Understanding the Electrode Data	680
Data Resulting from Mechanical Tests	680
Data Resulting from Chemical Analysis	680
Carbon Equivalent (CE)	681
SMAW Operating Information	681
Core Wire	682
Functions of the Flux Covering	682
Filler Metal Selection	683
Shielded Metal Arc Welding Electrode Selection	683
AWS Filler Metal Classifications	686
Carbon Steel	686
Carbon and Low-Alloy Steel–Covered Electrodes	686
Wire-Type Steel Filler Metals	690
Solid Wire	690
Tubular Wire	690
Metal Cored Arc Welding	
Electrodes	692
Stainless Steel Electrodes	692
Nonferrous Electrodes	692
Aluminum and Aluminum Alloys	695
Aluminum-Covered Arc Welding Electrodes	695
Aluminum Bare Welding Rods and Electrodes	696
Special-Purpose Filler Metals	696
Surface and Buildup Electrode Classification	696
Magnesium Alloys	696
Hydrogen Embrittlement	696
Summary	697
Review	697
I C V I C V V	0,77

Chapter 29 Welding Automation and Robotics

699
699
699
700
701

699

Machine Joining Processes	702
Automatic Joining Processes	702
Automated Joining	702
Industrial Robots	703
Robot Programming	704
System Planning	706
Present and Future Needs	706
Parts Design	706
Equipment Selection	707
Safety	710
Future Automation	712
Summary	712
Review	712

Chapter 30 Other Welding Processes

hapter 30 Other Welding Processes	714
Objectives	714
Key Terms	714
Introduction	715
Constant Current Welding Processes	715
Submerged Arc Welding (SAW)	715
Flux	717
Advantages of SAW	717
Disadvantages of SAW	718
Handheld SAW	718
Electroslag Welding (ESW)	718
Advantages	719
Disadvantages	720
Electrogas Welding (EGW)	720
Resistance Welding	720
Resistance Spot Welding (RSW)	721
Spot Welding Machines	722
Multiple-Spot Welders	722
Seam Welding (RSEW)	722
Types of Resistance Seam Welds	723
Electron Beam Welding (EBW)	726
Electron Beam Welding Gun	726
Electron Beam Seam Tracking	726
Ultrasonic Welding	727
Ultrasonic Welding (USW) Applications	728
Inertia Welding Process (FRW-I)	728
Inertia Weld Bond Characteristics	729
Advantages of the Process	731
Laser Beam Welding (LBW)	731
Laser Welding Advantages and Disadvantages	731
Laser Beam	731
Laser Beam Heat Treating	732
Plasma Arc Welding (PAW)	732
Stud Welding (SW)	733
Thermal Spraying (THSP)	733
Thermal Spraying (ThSF)	733
Thermospray (Powder) Process	734
Thermospray Gun	734
Torch Spraying	734
Applying Sprayed Metal	736
Plasma Spraying Process	736
Cold Welding (CW)	736
(2)	, 50

Thermite Welding	736
Hardfacing	738
Selection of Hardfacing Metals	739
Hardfacing Welding Processes	739
Quality of Surfacing Deposit	740
Hardfacing Electrodes	740
Shielded Metal Arc Method	741
Hardfacing with Gas Shielded Arc	741
Friction Stir Welding (FSW)	741
Magnetic Pulse Welding (MPW)	742
Hybrid Welding Processes	742
Summary	743
Review	743

SECTION 6 OXYFUEL PROCESSES

Chapter 31 Oxyfuel Welding and Cuttin	g
Equipment, Setup, and Operation	747
Objectives	747
Key Terms	747
Introduction	748
Pressure Regulators	748
Regulator Operation	748
Regulator Gauges	750
Regulator Safety Pressure Release Device	751
Cylinder and Regulator Fittings	752
Cryogenic Cylinders	752
Fittings	753
Regulator Safety Precautions	753
Regulator Care and Use	754
Welding and Cutting Torches: Design and Service	755
Combination Torches	755
Dedicated Cutting Torches	755
Mixing the Gases	756
Mixing Chamber	756
Injector Mixing	756
Torch Care and Use	757
Welding and Heating Torch Tips	757
Torch Tip Care and Use	758
Backfires and Flashbacks	759
Backfires	759
Flashbacks	759
Reverse Flow and Flashback Valves	759
Care of the Reverse Flow Valve and Flashback	
Arrestor	759
Hoses and Fittings	761
Hose Care and Use	761
Leak Detection Hoses	761
Leak Detection Fittings	762
Manifold Systems	762
Manifold Operation	763
Oxyfuel Flame	764
Characteristics of the Fuel-Gas Flame	764
Fuel Gases	764
Flame Rate of Burning	766
Acetylene (C_2H_2)	767

xiv

Key Terms

Acetone	768	
Heat and Temperature of Acetylene	769	
Liquefied Fuel Gases	769	
Pressure	769	
Methylacetylene-Propadiene (MPS)	769	
MAPP®	771	
Oxy-MAPP [®] Flames	771	
Propane and Natural Gas	772	
Hydrogen	773	
Filler Metals	776	
Ferrous Metals	776	
Mild Steel	776	
Cast Iron	777 783	
Summary Review	783	
	705	
Chapter 32 Oxyacetylene Welding	785	
Objectives	785	
Key Terms	785	
Introduction	785	
Mild Steel Welds	786	
Factors Affecting the Weld	786	
Characteristics of the Weld	787	
Flat Position Welding	794	
Outside Corner Joint	794	
Butt Joint	794	
Lap Joint	797	
Tee Joint	798	
Out-of-Position Welding	800	
Vertical Welds	800	
Butt Joint	803	
Lap Joint	804	
Tee Joint	804	
Horizontal Welds	805	
Horizontal Stringer Bead	805	
Butt Joint	806 806	
Lap Joint		
lee Joint Overhead Welds	806 806	
Stringer Bead	800	
Butt Joint	807	
Lap Joint	807	
Tee Joint	807	
Mild Steel Pipe and Tubing	807	
Horizontal Rolled Position 1G	808	
Horizontal Fixed Position 5G	810	
Vertical Fixed Position 2G	811	
45° Fixed Position 6G	812	
Thin-Wall Tubing	813	
Summary	813	
Review	814	
Chapter 33 Brazing, Braze Welding,		/
and Soldering	815	
Objectives	815	

Contents 815

Introduction	815
Brazing, Braze Welding, and Soldering	816
Brazing	816
Braze Welding	816
Soldering	816
Advantages of Brazing and Soldering	816
Physical Properties of the Brazed	
or Soldered Joint	818
Tensile Strength	818
Shear Strength	818
Ductility	818
Fatigue Resistance	818
Corrosion Resistance	819
Fluxes Used in Brazing, Braze Welding,	010
and Soldering	819
Flux	819
Forms of Fluxes	820
Fluxing Action	821
Brazing and Soldering Methods	821
Torch Brazing and Soldering	821
Furnace Brazing and Soldering	822
Induction Brazing and Soldering	823
Dip Brazing and Soldering	824
Resistance Brazing and Soldering	824 825
Special Methods Filler Metals	825
Types of Filler Metals	825
Soldering Alloys	826
Tin-Lead	826
Tin-Antimony	826
Cadmium-Silver	826
Cadmium-Zinc	826
Brazing Alloys	827
Copper-Zinc	827
Copper-Zinc and Copper-Phosphorus A5.8	828
Copper-Phosphorus	828
Copper-Phosphorus-Silver	829
Silver-Copper	829
Nickel	829
Nickel and Nickel Alloys A5.14	829
Aluminum-Silicon (BAISi)	829
Copper and Copper Alloys A5.7	829
Silver and Gold	829
Joint Design	829
Joint Spacing	829
Brazing Practices	832
Surface Buildup and Hole Fill Practices	838
Silver Brazing Practices	839
Soldering Practices	842
Summary	846
Review	846

Appe	ndix	848
١.	Student Welding Report	849
.	SENSE	850
.	SENSE	851

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

815

IV. Conversion of Decimal-Inches to Millimeters and Fractional Inches to Decimal-Inches and Millimeters V. Conversion Factors: U.S. Customary	852	VIII. Pressure Conversion IX. Welding Codes and Specifications X. Welding Associations and Organizations	856 857 858
(Standard) Units and Metric Units (SI) VI. Abbreviations and Symbols VII. Metric Conversion Approximations	853 855 856	Glossary Index	859 910

XV

Preface

Introduction

The welding industry presents a continuously growing and changing series of opportunities for skilled welders. Even with economic fluctuations, the job outlook for skilled welders is positive. Due to a steady growth in the demand for goods fabricated by welding, new welders are needed in every area of welding, such as small shops, specialty fabrication shops, large industries, and construction. The student who is preparing for a career in welding will need to:

- be alert and work safely.
- have excellent hand-eye coordination.
- · work well with tools and equipment.
- have effective written and verbal communications skills.
- be able to resolve basic mathematical problems.
- be able to follow written and verbal instructions.
- work with or without close supervision.
- work well individually and in groups.
- read and interpret welding drawings and sketches.
- know the theory and application of the various welding and cutting processes.
- · be computer literate.

A thorough study of Welding: Principles and Applications in a classroom/shop setting will help students prepare for opportunities in welding technology. The comprehensive technical content provides the basis for the welding processes. The extensive descriptions of equipment and supplies, with in-depth explanations of their operation and function, are designed to familiarize students with the tools of the trade. The process descriptions, practices, and experiments coupled with actual performance teach the critical fabrication and welding skills required on the job. The text also discusses occupational opportunities in welding and explains the training required for certain welding occupations. The skills and personal traits recommended by the American Welding Society (AWS) for its SENSE (School Excelling through National Skill Standards Education) Welder Certification program are included within the text.

The National Center for Welding Education and Training, known as Weld-Ed, is a partnership between business and industry, community and technical colleges, universities, the American Welding Society, and government to promote welding education.

Organization

The text is organized to guide the student's learning from an introduction to welding, through critical safety information, to details of specific welding and cutting processes, and on to the related areas of shop math, welding metallurgy, weldability of metals, reading technical drawings, fabrication, testing and inspection of welds, welding joint design, welding costs, welding symbols, and AWS SENSE certification.

Each section of the text introducing a welding process or processes begins with an introduction to the equipment and materials to be used in the process(es), including setup in preparation for welding. The remaining chapters for the specific process concentrate on the actual welding techniques in various applications and positions. The content progresses from basic concepts to the more complex welding technology. Once this technology is understood, the student is able to quickly master new welding tasks or processes. All of the welding technology and practices lead the student toward the ability to take and pass an AWS SENSE certification workmanship standard.

The sections on welding processes are laid out so that they can be studied individually and in any order. This was done so students can study the process or processes that might relate to their job requirements. However, students are encouraged to study and learn all of the processes so they have the broadest possible future job opportunities.

Objectives listed at the beginning of each chapter tell the student and instructor what is to be learned while studying the chapter. A survey of the objectives will show that the student will have the opportunity to develop a full range of welding skills. Each major process is presented independently so that the instructor can include or exclude them to better meet the needs of the local area served by the program. However, the student can still learn all essential information needed for a thorough understanding of all processes studied.

Key Terms are listed at the beginning of the chapter. These key terms are **boldface** and defined throughout the chapters so students will recognize them as they appear. Terms and definitions used throughout the text are based on the American Welding Society's standards. Industry jargon has also been included when appropriate.

Cautions for the student are given throughout the text and point out potential safety concerns or give additional specific information that will make working safer.

Think Green text boxes contain information on conserving materials, energy, and other natural resources and ways to avoid potential environmental contamination.

Preface

Metric equivalents are listed in parentheses for dimensions. When the standard unit is an approximation, the metric equivalent has been rounded to the nearest whole number; however, when the standard unit is an exact value, the metric conversions are more precise.

Illustrations consist of figures, tables, and graphs. Figures include both photographs and line art. Numerous figures contain close-up full-color photos of actual welding, and others show welding products and equipment. The colorful detailed figure line art is used extensively throughout the text to help illustrate concepts and clarify the material. Tables and graphs contain valuable technical information on materials, equipment setup, and welding process parameters. They are designed to help the student in class and later serve as an on-the-job reference.

Experiments and Practices are learning activities that are presented in most of the chapters. The end of each experiment is identified by the (\blacklozenge) symbol and the end of each practice is identified by the (\diamondsuit) symbol.

Experiments help the student learn the parameters of each welding process. Often, because it is hard to perform the experiment and to observe the results closely, students may do most of the experiments in a small group. In the experiments, students change the parameters to observe the effect on the process. In this way, students learn to manipulate the variables to obtain the desired welding outcome for given conditions. The experiments provided in the chapters do not have right or wrong answers. They are designed to allow the student to learn the operating limitations or the effects of changes that may occur during the welding process.

Practices are included to enable the student to develop the required manipulative skills using different materials and material thicknesses in different positions for each process. A sufficient number of practices is provided so that, after the basics are learned, the student may choose an area of specialization. Materials specified in the practices may be varied in both thickness and length to accommodate those supplies that students have in their lab. Changes within a limited range of both thickness and length will not affect the learning process designed for the practice.

Mechanical drawings are included with many of the welding practices. These drawings are included to help students better understand mechanical drawings and to show them how the metal is assembled. Most of the drawings are laid out in third-angle projection format, some are in the first-angle projection format, and a few are laid out with the side view shown in an alternate position. The thirdangle projection format has been the standard used in the United States for years. However, because of the increasing interaction with the world economy, and because of the fact that many other countries use the first-angle projection format, it has been included. All three drawing formats are commonly used and are included. Items not normally included on true mechanical drawings such as the weld, torch, or electrode, and filler metal have been included to aid in students' understanding of the drawings.

Summaries at the end of each chapter recap the significant material covered in the chapter. This summary will help the student more completely understand the chapter material and will serve as a handy study tool.

Review questions at the end of each chapter can be used as indicators of how well the student has learned the material in each chapter.

Glossary definitions include the key terms listed at the beginning of each chapter and also other relevant welding terms. Included in the Glossary are bilingual terms in Spanish. Many definitions feature additional drawings to assist students in gaining a complete understanding of the terms.

What's New in the 8th Edition

This eight edition of *Welding: Principles and Applications* has been thoroughly revised and reorganized to reflect the latest welding technologies. Changes include the following:

- New chapters include "SMAW SENSE Certification," "GMAW and FCAW SENSE Certification," and "GTAW SENSE Certification"
- New welding processes and technologies such as magnetic pulse welding
- Expanded material on processes such as plasma cutting, FCAW, GMAW, and others
- New feature stories at the end in many of the chapters
- New and updated illustrations and photographs in every chapter

The use of new, full-color, detailed close-up photographs and detailed colored line art makes it much easier for the student to see what is expected to produce a quality weld.

Supplements Study Guide/Lab Manual

The *Study Guide/Lab Manual* has been updated to reflect changes made to the eighth edition. The *Study Guide/Lab Manual* is designed to reinforce student understanding of the concepts presented in the text. Each chapter starts with a review of the important topics discussed in the chapter. Students can then test their knowledge by answering additional questions. Lab exercises are included in those chapters (as appropriate) to reinforce the primary objectives of the lesson. Artwork and safety precautions are included throughout the manual.

Instructor Companion Website

The Instructor Companion Website, found on cengagebrain.com, includes the following components to help minimize instructor preparation time and engage students:

- PowerPoint[®] lecture slides, which present the highlights of each chapter.
- An **Image Gallery**, which offers a database of hundreds of images in the text. These can easily be imported into the PowerPoint[®] presentations.

• An **Answer Key** file, which provides the answers to all end-of-chapter questions and the quizzes found in the Study Guide/Lab Manual.

Cengage Learning Testing Powered by Cognero

- Author, edit, and manage test bank content from multiple Cengage Learning solutions.
- Create multiple test versions in an instant.
- Deliver tests from your LMS, your classroom, or wherever you want.

MINDTAP Welding for Welding: Principles and Applications

MindTap is a personalized teaching experience with relevant assignments that guide students to analyze, apply, and improve thinking, allowing you to measure skills and outcomes with ease.

- *Personalize Teaching*: Becomes YOURS with a Learning Path that is built with key student objectives. Control what your students see and when they see it—match your syllabus exactly by hiding, rearranging, or adding your own content.
- *Guide Students:* Goes beyond the traditional "lift and shift" model by creating a unique learning path of relevant readings, multimedia, and activities that move students up the learning taxonomy from basic knowledge and comprehension to analysis and application.
- *Measure Skills and Outcomes*: Analytics and reports provide a snapshot of class progress, time on task, engagement, and completion rates.

FEATURES OF THE TEXT

Introduction to Welding

OBJECTIVES

- After completing this chapter, the student should be able to explain how each one of the major welding process
- list the factors that must be considered before a welding process is selected.
- discuss the history of welding.
- describe briefly the responsibilitie duties of the welder in various welding positions

fusion welding

define the terms weld, forge werding, resistance welding, fusion welding, coalescence, and certification.

KEY TERMS 🕊 American Welding Society (AWS)

automated operation automatic operation certification coalescence flux cored arc weldina (FCAW)

gas tungsten arc welding (GTAW) machine operation manual operation oxvfuel aas cuttina (OFC) oxyfuel gas welding (OFW)

gas metal arc welding (GMAW)

INTRODUCTION

forae weldina

nethods of joining materials improved through the so did the environment and mode of living for hu-s. Materials, tools, and machinery improved as civili-

mans. Mattering, wear, and zation developed. Fastering together the parts of work implements began when someone attached a stick to a stone to make a spear or axe. Egyptians used stone tools to create temples and or axe regyptians used stone tools to create temples and pyramids that were fastened together with an adhesive of gypsum mortar. Some walls that still exist depict a space-oriented figure that was as appropriate then as now—an

CUT LINE

CUT LINE

ibis-beaded god named Thoth who protected the moon and was believed to cruise space in a vessel. Other types of adhesives were used to join wood and stone in ancient times. However, it was a long time be-fore the ancient discovered a method for joining met-als. Workers in the Bronze and Iron Ages began to solve her problems of forming, estain, and alloying metals. Welding metal surfaces was a problem that long puzzled metalvorkers of that time period. Early metal-joining methods included processes such as forming a sand mold

qualification

(SMAW)

weld

welding

resistance welding

semiautomatic operation

shielded metal arc welding

torch or oxyfuel brazing (TB)

183

and clothing, and one piece of mild seel plate 6 in, (152 mm) long × 1/4 in. (6 mm) to 3/8 in. (10 mm) thuk, marked in stripts 1/2 in. (13 mm) wide and held in the vertical position. You will make a straight line cut. Make sure than the sparks do not curse a safety hazard and that the metal being cut off will not fall on any person or object.

or object. Starting at the top, make one cut downward. Then, starting at the bottom, make the next cut upward. The cut summer at the towards, make the next Cut upward. The Cut must be free of hard slag and within $\pm 3/32$ in (2 mm) of a straight line and $\pm 5^{\circ}$ of being square. Repeat these cuts until they can be made within tolerance. Turn off the cyl-inder valves, bleed the hoses, back out the pressure regulators, and clean your work area when you are finished

Complete a copy of the "Student Welding Report" listed in Appendix I or provided by your instructor. ◆

Using a pi

otection and clothing, and one in. (152 mm) long × 1/4 in. thick marked in strips 1/2 in. (6 mm) to 3/8 in. (1 (13 mm) wide, you will make a tion. When making overhead completely protected from the the standard safety clothing, y jacket, leather apron, cap, ear prote


away. The metai should tail here when i ted. The cut must be within 1/8 in. (3 t line and $\pm 5^{\circ}$ of being square. Repeat thi the cut can be made within tolerance. T a valves, bleed the hoses, back out the p , and team your work area when you are fit

in Appendix I or p

CUTTING APPLICATION

Addang practice cuts on a piece of metal time will only become scrap is a good way to learn the proper tools rech-quess. If a bad cut is made, there is no loss. In a pi-duction shop, where each piece of metal is important, shops profits. A number of factors that do not exist during practice cuts can affect your ability to make a quality cut on a part. the following are some of the things that can become prob-lems when cutting:

Changing positions: Often, parts are larger than can be cut from one position, so you may have to

Key Terms are the most important technical words you will learn in the chapter. These are listed at the beginning of each chapter following the Objectives and appear in **color print** where they are first defined. These terms are also defined in the Glossary at the end of the book.

Cautions summarize critical safety rules. They alert you to operations that could hurt you or someone else. They are not only covered in the safety chapter but also found throughout the text when they apply to the discussion, practice, or experiment.

Think Green boxes contain information on conserving materials, energy, and other natural resources and ways to avoid potential environmental contamination.

Waste Material Disposal Welding shops generate a lot of vester material. Much of the vasie is scrap matel. All scrap metal, including the recipiting metal are good for the environment and can generate revenue for your veding shop. The scheme strap welding scheme scheme solvents, and dus colected in hopp air fittation sys-tems, may be considered hazardous material. Check with the material manufacture or an environmental con-sultant to determine if any vester material in considered hazardous. Throwing hazardous area markenial income trash, poung it on the ground, or durping it down the drain is liegal. Before you dispose of any veding shop wester that is considered hazardous, you must first con-sultant to determine frameworks, you must first con-sult local, state, and/of federal regulations. Protecting our environment from pollution is everyone's responsibility.

SAFETY DATA SHEETS (SDSs) SAFELY DATA SHEETS (SUDS) All manufactures of potentially hazardoss materials must provide to the users of their products detailed miormation regarding possible hazards resulting from the use of their products. These safety data sheets (SDS) were formely known as material safety data sheets (MSDS) They must be provided to anyone using the product or anyone work-ing in the area where the products are in use. Often com-panies will post these sheets on a bulletin board or put them in a convenient place near the work area. Some states have night-to-know laws that require specific training of a employee who handle or work in a reas with hazardous materials

Section 1 Introduction

CAUTION If you feel you have been injured while using a product, then you should, if possible, take the material's SDS with you when you are seeking medical treatment.

HANDLING AND STORING **CYLINDERS**

CYLINDERS Oxygen and fuel gas cylinders or other flammable materials must be stored separately. The storage areas must be separated by 20 ft (6.1 m) or by a wall 5-ft high (1.5 m) with a least a 30-minute (min) burn rating, Figure 2-23. The purpose of the distance or wall is to keep the heat of a small fire from causing the oxygen cylinder safety valve to release. If the safety valve were to release the oxygen, then a small fire would become a raging inferno. Inert gas cylinders may be stored separately or with ox-ygen cylinders. Empty cylinders must be stored separately

Practices are hands-on exercises designed to build your welding skills. Each practice describes in detail what skill you will learn and what equipment, supplies, and tools you will need to complete the exercise.

Experiments are designed to allow you to see what effect changes in the process settings, operation, or techniques have on the type of weld produced. Many are group activities and will help you learn as a team.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Minimi ing Distortion lit and adjusted cutting torch, w Using a p protection and clothing, and two (254 mm) long × 1/4 in. (6 mm) o consand then compare the distorand cut out be

of metal as shown in and then cut the re-Figure 7-75. Allow the ...compare the onplete a copy of the ondix I or per

PRACTICE 7-9

EXPERIMENT 7-4

Beveling a Plate

Beveling a Plate Use a properly lina diajusted cutting torch, welding gloves, appropriate eye protection and clothing, and one piece of mild steel plate 6 in (152 mm) long X 38 m. (10 mm) thick. You will make a 45° beerd down the length of the plate. Mark the plate in srips 127 at 137 mm) wide. Set the tip for beerding and cut a beerd. The beerd should be within 432 Ju. (2 mm) of a straight line and $\pm 5^{\circ}$ of a 45° angle.

 \pm 3/32 in: (2 mm) of a straight line and \pm 5% of a 45% angle. There may be some soft slag. Jun to hard slag, on the beveled plate. Repeat this Practice until the cut can be made within olerance. Turn of the cylinder valves, bleed the hoses, back out the pressure regulators, and clean your work area when you are finished cutting. Complete a copy of the "Student Welding Beport" listed in Appendix I or provided by your instructor.

PRACTICE 7-10

Vertical Straight Cut For this Practice, you will need a properly lit and adjusted cutting torch, welding gloves, appropriate eye protection y lit and adjusted cutting torch, t in the overhead posi s, it is important to be

nd a full face e torch can be angled so that m

cutting. Cor nt Welding Report" listed

Any system of ventilation should draw the f oke away before it rises past the level of the

10,000 cu ft 25'

n with a ceiling that is 16 ft. (4.9 m)

forced ventilation unless

ed using fixed o

ng welding

2-24. General room

32

FIGURE 2

Figure 2-23, may no fumes or smoke begin

Forced Ventilation numbers of welders requi ventilation can be genera

flexible exhaust pickups, Fig ventilation must be at a rate of

fuest nave a drait strong enoug feet (30.5 m) per minute of air fumes away from the welder. Le ulations may require that weld remove hazardous components

nore per person weldin nust have a draft strong

into the atmosphere

Section 2 Shielded Metal Arc Welding

Summaries review the important points in the chapter and serve as a useful study tool.

Real-World Features at the end of all chapters present a story that describes a real-world application of the theory learned in the chapter. You will see how particular knowledge and skills are important to the world.

Review questions help measure the skills and knowledge you learned in the chapter. Each question is designed to help you apply and understand the information in the chapter.

Success Stories are found at the beginning of each of the seven sections in the text. These stories are about real people who have become successful by using their welding skills. Each story is different, but one message is repeated by all story contributors: welding can be a rich and rewarding career.

Bilingual Glossary definitions provide a Spanish equivalent for each new term. Additional line art in the Glossary will also help you gain a greater understanding of challenging terms.

stairs or uneven surfaces

Never Overreach. Always keep your body betw side rails. Never overextend yourself; rather, climb down, and move the ladder closer to your task.

Success Story

100

Summary

Mv name is Shakirah Harrell. I was born in Newark. New Jerse d in the little town of Powellsville. North Carolina.

Select the Proper Ladder for the Task at Hand. A

use the correct style, length, weight rating, and material. F example, always use fiberglass near live electrical circuits.

and raised in the little town of Powellsville, North Carolina I graduated from Henford County High Schoolin A hookisk Tobolin A hookisk Carolina As a single young parent, I needed to find a career field that would support my family, so I moved to Hampton, Viginai. I started my welding career at the age of 23. At that time, the only thing I knew about welding was that it was a good paying job. I applied at Northrop rurman, a shippard in Newport News (Yighina, and begain my training as a welder. To help support my family, worked as a grocery store manager in the morning and welder at the struct.

I vorket as a grocery store manager in the morning and welder at night. After one year in the field as 3rd class welder. If or accepted in the happeneticidenip program. I pent the next five years learning the welding trade while still being able to support my family. I graduated from the apprenticativp program in 2008. Then I decided to pursue another angle in the welding trade. I got hired at a local welding school where I begin instruction basic welding during the day while working on my Bachelor's Degree in business manage-ment at right and online. After only a few months, I was asked to take a position at the school as the welding coordinator for the entire program. After four years, I missed welding and the money I would make, so I decided to go back into the field as a contractor at another local shippand in Morkil, Vignian. Over the next (two years, I followed welding oppor-tunities across other parts of the United States. I was a structural welder at an ethanol plant project in Liberal. Fuences Enderson the I monet I becent. Texes to not a greaters may awallen correar offeed the Fuence and the structure is the structure of the United States. I was a structure and the fuence rest free the Fuence and the structure is the structure of the United States. I was a structure in the structure in the Fuence and the structure is the structure of the fuence of the fuence of the United States. I was a structure in the structure is the fuence of the States in the structure in the States in the structure is the structure of the United States in the structure is the structure in the States in the structure is the structure in the structure is the structure in the structure in the structure is the structure in the structure in the structure is the structure in the structure in the structure is the structure in the structure in the structure is the structure in the structure in the structure is the structure in the structure in the structure is the structure in the structure in the structure is the struct

Kansas. Following that, I moved to Freeport, Texas, took a refresher pipe welding course offered by Fluor, and started working on a chemical plant project for Dow Chemical Company.

Set Act whome gives denote past projection over classification and participation of the participation of the projection over classification and participation of the participation over the set of the downtrum in the economy. I was not able to find a good high-paying job, so I moved back to Texas. I an currently a welding instructor at Tulka Welding School and Technology Center at the Houston

campus. Welding has been a great career for me and a skill that has provided for my family. My oldest son has joiner the United States Navy, one of the others is a high school senior, and the youngest is a high school junior. I'n proud to be a welder, I'm proud of my kids, and proud of the life that welding has provided for us.

Acknowledgments

To bring a book of this size to publication requires the assistance of many individuals, and the author and publisher thank the following for their unique contributions to this and/or prior editions:

- Marilyn K. Burris, for the years of work on this text and graphics.
- The American Welding Society, Inc., who's *Welding Journal* was an invaluable source for many of the special-interest articles.
- John L. Chastain, who worked with the author for many long hours to perfect the photographic techniques required to achieve the action photos.
- Dewayne Roy, Welding Department Chairman at Mountain View College, Dallas, Texas, for his many contributions to this text.
- The Harris Products Group and Jay Jones for all the help they provided for the preparation of this text.
- Garland Welding Supply Co. Inc., for the loan of materials and supplies for photo shoots.
- Ernest Levert, welding engineer at Lockheed Martin, for all of his great technical advice and for sharing his welding experiences.
- Special thanks are due to the following companies for their contributions to the text: Skills USA-VICA; Praxair; NASA Media Research Center; Miller Electric Co.; Caterpillar, Inc.; ESAB Welding & Cutting Products; Frommelt Safety Products; Hornell Speedglas, Inc.; Mine Safety Appliances, Co.; Lincoln Electric; Jackson Products/Thermadyne; Thermadyne Holdings; Hobart Brothers Co.; Concoa Controls Corp.; Stanley Works; Rexarc; Magnaflux Corp.; Buehler Ltd.; T.J. Snow Co., Inc.; Victor Equipment; E.O. Paton Electric Welding Institute; CRC-Evans Automatic Welding; Cherry Point Refinery; The Aluminum Assoc./Automotive & Light Truck Group; E.I. DuPont de Nemours & Co.; Philips Gmbh; Technical Systems; GWS Welding Supply Co.; Merrick Engineering, Inc.; Reynolds Metals Co.; Liquid Air Corp.; Alphagaz Div.; American Torch Tip; ARC Machines, Inc.; FANUX Robotics North America, Inc.; Alexander Binzel Corp.; Sciaky Brothers, Inc.; Aluminum Co. of America; National Machine Co.; Leybold Heraeus Vacuum Systems, Inc.; Sonobond Ultrasonics; Foster Instruments; Prince & Izant Company; United Association of the Journeymen and Apprentices of the Plumbing and Pipe Fitting Industry of the United States and Canada, Local No. 100; Atlas Copco Drilling Solutions Inc; Garland Welding Supply Co., Inc.; and the City of Garland Texas: Garland Power and Light.

• The following individuals who are featured in the Success Stories in the text. They are valuable contributors to the textbook and an inspiration for those entering the welding industry: Erin Boren, Matthew Lee, Shakirah Harrell, Matthew Boomer, Ken Leonard, John Karney

The author also expresses his deepest appreciation to:

- The welding instructors at Worcester Technical High School, Massachusetts; Craven Community College, North Carolina; Great Plains Technology Center, Oklahoma; Atlantic Technical Center, Florida; El Camino Community College, California; Wichita Area Technical College, Kansas; Antelope Valley College, California; Blackhawk Technical College, Wisconsin; Wenatchee Valley College, Washington; Tyler Junior College, Texas; Midlands Technical College, South Carolina; John A. Logan College, Illinois; Northwest Mississippi Community College, Mississippi; Tarrant County College, Texas; Greater Lowell Technical High School, Massachusetts; Long Beach City College, California; Reading Area Community College, Pennsylvania; College of the Ozarks, Missouri; Bessemer State Technical College, Alabama; York Technical College, South Carolina; Lakeview High School, Texas; Newberry County Career Center, South Carolina; Palm Beach Community College, Florida; Texas State Technical College, Texas; Grand Rapids Community College, Michigan; Kilgore College, Texas; Tulsa Technology Center, Oklahoma; Calcasieu Parish School, Louisiana; Florence-Darlington Technical College, South Carolina; Jefferson High School, Texas; Coastal Carolina Community College, North Carolina; Los Angeles Unified School District, California; Vatterott College, Missouri; New River Community College, Virginia; New Hampshire Technical College at Manchester, New Hampshire; Augusta Technical College, Georgia; and Austin Community College, Texas. The welders at all of these institutions have shared with me their welding experiences, teaching experiences, and students' experiences, which have helped form the basis for many of the updates in this edition.
- David DuBois, for the use of his welding shop for many of the photo shootings, and both David and Amy DuBois, for their editorial assistance in preparing the text.
- Kevin Gratton and Ashley Black, welding instructors at Lexington Area Technical High School, South Carolina, for sharing their knowledge gained

xxii

from years of experience in welding and teaching, but most of all for their friendship.

- Special thanks to Lincoln Electric for providing their women's welding gear for the cover photo.
- In memory of Leo Taylor, an outstanding welder educator and welder who trained many young people in the art and skill of welding.
- Sam Burris, for his expertise in computer graphics that helped make the illustrations and photographs dynamic.
- To my wife, Carol, for all of her moral support, and to my daughters, Wendy and Amy, for all of the general office help they provided.

About the Author

In 1965, during my senior year at New Bern High School in North Carolina, while taking shop classes, I am proud to say I joined the Vocational Industrial Clubs of America (VICA), now SkillsUSA-VICA. SkillsUSA brings together educators, administrators, corporate America, labor organizations, trade associations, and government in a coordinated effort to address America's need for a globally competitive, skilled workforce. The mission of SkillsUSA is to help our students become world-class workers and responsible American citizens. Through my involvement in Skills-USA, I learned a great deal about industry and business. In SkillsUSA I learned the value of integrity, responsibility, citizenship, service, and respect. In addition, I developed leadership skills, established goals, and learned the value of performing quality work. These are all things that I still use in my life today.

During my junior year of high school, I learned to weld in metal shop. I was taught basic welding principles and applications, and I was able to build a number of projects in shop using oxyacetylene welding, shielded metal arc welding, twin carbon arc welding, and torch brazing.

The practice welds helped me develop welding skills, and building the projects allowed me to start developing some fabrication skills. By the end of my junior year, I had become a fairly skilled welder.

In my senior year I was given an opportunity to join Mr. Z. T. Koonce's first class in a new program called Industrial Cooperative Training (ICT). ICT is a cooperative work experience program that coordinates school experiences with real jobs. This allowed me to attend high school in the morning, where I completed my required English, math, and other academic courses for graduation. In my ICT class we were taught skills that would help us get a job—such as how to fill out a job application, how to interview, and so on. In the afternoons I worked as a welder. After graduation, I started a full-time job as a welder at Barbour Boat Works, where I refined my welding skills and was allowed to work with the other welders in the shipyard. My first welding assignment was on a barge making intermittent welds to attach the deck to the barge's ribs.

As my welding skills improved, my supervisor allowed me to apply my new welding skills to more difficult jobs. I welded on barges, military landing crafts, tugboats, PT boats, small tankers, and other marine vessels. This is how I earned money toward my college education.

With my welding skills, I was able to get a job in a small welding shop in Madisonville, Tennessee and attended Hiwassee College. After graduating from Hiwassee, I found other welding jobs that allowed me to continue my education at the University of Tennessee, where I earned a bachelor's degree. After four years, I had both a college degree and four years of welding experience, which together qualified me for my job as a vocational teacher.

During my career as a welder, I have welded on tanks, pressure vessels, oil well drilling equipment, farm equipment, buildings, racecars, aircraft, piping systems, and more. As a vocational teacher, I have taught in high schools, schools for special education, schools for the deaf, three colleges, and numerous industrial shops. I have also been a consultant to the welding industry and a resource for students, educators, and school administrators.

Larry Jeffus has more than 50 years of welding experience and more than 40 years of experience as a classroom teacher. He is the author of several Delmar Cengage Learning welding publications. Prior to retiring from teaching, Professor Jeffus taught at Eastfield College, part of the Dallas County Community College District. Since retiring from full-time teaching, he remains very active in the welding community, especially in the field of education. He serves on several welding program technical advisory committees and has visited high schools, colleges, universities, and technical campuses in more than 40 states and four foreign countries. Professor Jeffus was selected as Outstanding Postsecondary Technical Educator in the State of Texas by the Texas Technical Society. He holds a bachelor of science degree and has completed postgraduate studies.

Professor Jeffus has served for 12 years as a board member on the Texas Workforce Investment Council in the Texas Governor's office, where he works to develop a skilled workforce and bring economic development to the state. He served as a member of the Apprenticeship Project Leadership Team, where he helped establish apprenticeship training programs for the State of Texas, and he has made numerous trips to Washington, DC, to lobby for vocational and technical education.

He has been actively involved in the American Welding Society for more than 40 years, and has served on the General Education Committee and as the chairman of the North Texas Section of the American Welding Society. He is a Life Member of the American Welding Society.

Index of Experiments and Practices

The following Experiments and Practices are listed in the order in which they appear in the chapter. It should be noted that not all chapters have Experiments and Practices.

Chapter 3

Experiment 3-1	Estimating Amperages.	59
Experiment 3-2	Calculating the Amperage Setting	59
Practice 3-1	Estimating Amperages.	
Practice 3-2	Calculating Amperages	60
Practice 3-3	Reading the Duty Cycle Chart	
Practice 3-4	Determining Welding Lead Sizes	
Practice 3-5	Repairing Electrode Holders	

Chapter 4

Practice 4-1	Shielded Metal Arc Welding Safety	70
Practice 4-2	Striking the Arc.	
Practice 4-3	Striking the Arc Accurately	
Experiment 4-1	Effect of Amperage Changes on a Weld Bead	
Experiment 4-2	Excessive Heat.	
Experiment 4-3	Effect of Changing the Arc Length on a Weld	
Experiment 4-4	Effect of Changing the Electrode Angle on a Weld	
Practice 4-4	Straight Stringer Beads in the Flat Position Using E6010 or E6011 Electrodes, E6012 or E6013 Electrodes, and E7016 or E7018 Electrodes	81
Practice 4-5	Stringer Beads in the Vertical Up Position Using E6010 or E6011 Electrodes, E6012 or E6013 Electrodes, and E7016 or E7018 Electrodes	82
Practice 4-6	Horizontal Stringer Beads Using E6010 or E6011 Electrodes, E6012 or E6013 Electrodes, and E7016 or E7018 Electrodes	82
Practice 4-7	Welded Square Butt Joint in the Flat Position (1G) Using E6010 or E6011 Electrodes, E6012 or E6013 Electrodes, and E7016 or E7018 Electrodes	83
Practice 4-8	Vertical (3G) Up-Welded Square Butt Weld Using E6010 or E6011 Electrodes, E6012 or E6013 Electrodes, and E7016 or E7018 Electrodes	84
Practice 4-9	Welded Horizontal (2G) Square Butt Weld Using E6010 or E6011 Electrodes, E6012 or E6013 Electrodes, and E7016 or E7018 Electrodes	87
Practice 4-10	Edge Weld in the Flat Position Using E6010 or E6011 Electrodes, E6012 or E6013 Electrodes, and E7016 or E7018 Electrodes	87
Practice 4-11	Edge Joint in the Vertical Down Position Using E6010 or E6011 Electrodes, E6012 or E6013 Electrodes, and E7016 or E7018 Electrodes	88
Practice 4-12	Edge Joint in the Vertical Up Position Using E6010 or E6011 Electrodes, E6012 or E6013 Electrodes, and E7016 or E7018 Electrodes	89
Practice 4-13	Edge Joint in the Horizontal Position Using E6010 or E6011 Electrodes, E6012 or E6013 Electrodes, and E7016 or E7018 Electrodes	
Practice 4-14	Edge Joint in the Overhead Position Using E6010 or E6011 Electrodes, E6012 or E6013 Electrodes, and E7016 or E7018 Electrodes	90
Practice 4-15	Outside Corner Joint in the Flat Position Using E6010 or E6011 Electrodes, E6012 or E6013 Electrodes, and E7016 or E7018 Electrodes	91
Practice 4-16	Outside Corner Joint in the Vertical Down Position Using E6010 or E6011 Electrodes, E6012 or E6013 Electrodes, and E7016 or E7018 Electrodes	
Practice 4-17	Outside Corner Joint in the Vertical Up Position Using E6010 or E6011 Electrodes, E6012 or E6013 Electrodes, and E7016 or E7018 Electrodes	
Practice 4-18	Outside Corner Joint in the Horizontal Position Using E6010 or E6011 Electrodes, E6012 or E6013 Electrodes, and E7016 or E7018 Electrodes	

xxvi

Index of Experiments and Practices

Practice 4-19	Outside Corner Joint in the Overhead Position Using E6010 or E6011	
	Electrodes, E6012 or E6013 Electrodes, and E7016 or E7018 Electrodes.	93
Practice 4-20	Welded Lap Joint in the Flat Position (1F) Using E6010 or E6011 Electrodes,	
	E6012 or E6013 Electrodes, and E7016 or E7018 Electrodes.	94
Practice 4-21	Welded Lap Joint in the Horizontal Position (2F) Using E6010 or E6011	
	Electrodes, E6012 or E6013 Electrodes, and E7016 or E7018 Electrodes.	96
Practice 4-22	Lap Joint in the Vertical Position (3F) Using E6010 or E6011 Electrodes, E6012	
	or E6013 Electrodes, and E7016 or E7018 Electrodes	96
Practice 4-23	Lap Joint in the Overhead Position (4F) Using E6010 or E6011 Electrodes,	
	E6012 or E6013 Electrodes, and E7016 or E7018 Electrodes	96
Practice 4-24	Tee Joint in the Flat Position (1F) Using E6010 or E6011 Electrodes,	
	E6012 or E6013 Electrodes, and E7016 or E7018 Electrodes	98
Practice 4-25	Tee Joint in the Horizontal Position (2F) Using E6010 or E6011 Electrodes,	
	E6012 or E6013 Electrodes, and E7016 or E7018 Electrodes	99
Practice 4-26	Tee Joint in the Vertical Position (3F) Using E6010 or E6011 Electrodes,	
	E6012 or E6013 Electrodes, and E7016 or E7018 Electrodes	99
Practice 4-27	Tee Joint in the Overhead Position (4F) Using E6010 or E6011 Electrodes,	
	E6012 or E6013 Electrodes, and E7016 or E7018 Electrodes	99
	Chapter 5	
Practice 5-1	Beading, 1G Position, Using E6010 or E6011 Electrodes and E7018 Electrodes	. 111
Practice 5-2	Butt Joint, 1G Position, Using E6010 or E6011 Electrodes.	
Practice 5-3	Butt Joint, 1G Position, Using E6010 or E6011 Electrodes for the Root Pass	
	with E7018 Electrodes for the Filler and Cover Passes	. 115
Practice 5-4	Stringer Bead, 2G Position, Using E6010 or E6011 Electrodes and E7018 Electrodes	. 116
Practice 5-5	Butt Joint, 2G Position, Using E6010 or E6011 Electrodes.	. 116
Practice 5-6	Butt Joint, 2G Position, Using E6010 or E6011 Electrodes for the Root Pass	
	and E7018 Electrodes for the Filler and Cover Passes	. 117
Practice 5-7	Stringer Bead, 5G Position, Using E6010 or E6011 Electrodes and E7018 Electrodes	

Practice 5-8	Butt Joint, 5G Position, Using E6010 or E6011 Electrodes for the Root Pass	
	and E7018 Electrodes for the Filler and Cover Passes 119	9
Practice 5-9	Butt Joint, 5G Position, Using E6010 or E6011 Electrodes	9
Practice 5-10	Stringer Bead, 6G Position, Using E6010 or E6011 Electrodes and E7018 Electrodes 119	9
Practice 5-11	Butt Joint, 6G Position, Using E6010 or E6011 Electrodes 120	0
Practice 5-12	Butt Joint, 6G Position, Using E6010 or E6011 Electrodes for the Root Pass	
	and E7018 Electrodes for the Filler and Cover Passes 120	0

Chapter 6

Practice 6-1	Root Pass on Plate with a Backing Strip in All Positions	124
Practice 6-2	Root Pass on Plate with an Open Root in All Positions	125
Practice 6-3	Open Root Weld on Plate Using the Step Technique in All Positions	126
Experiment 6-1	Hot Pass to Repair a Poor Weld Bead	128
Practice 6-4	AWS SENSE Welding Procedure Specification (WPS)	137
Practice 6-5	Welding Procedure Specification (WPS)	139
Practice 6-6	Welding Procedure Specification (WPS)	141
Practice 6-7	AWS SENSE Welding Procedure Specification (WPS)	144
Practice 6-8	Single V-Groove Open Root Butt Joint with an Increasing Root Opening	146
Practice 6-9	Single V-Groove Open Root Butt Joint with a Decreasing Root Opening	147

Chapter 7

Practice 7-1	Setting Up a Cutting Torch	169
Practice 7-2	Cleaning a Cutting Tip	169
Practice 7-3	Lighting the Torch	170
Practice 7-4	Setting the Gas Pressures	175
Experiment 7-1	Observing Heat Produced During a Cut	176
Experiment 7-2	Effect of Flame, Speed, and Pressure on a Machine Cut	178
Experiment 7-3	Effect of Flame, Speed, and Pressure on a Hand Cut.	178

Index of Experiments and Practices

xxvii

Practice 7-5	Flat, Straight Cut in Thin Plate	
Practice 7-6	Flat, Straight Cut in Thick Plate	
Practice 7-7	Flat, Straight Cut in Sheet Metal	
Practice 7-8	Flame Cutting Holes	
Experiment 7-4	Minimizing Distortion	
Practice 7-9	Beveling a Plate	
Practice 7-10	Vertical Straight Cut	
Practice 7-11	Overhead Straight Cut.	
Practice 7-12	Cutting Out Internal and External Shapes	
Practice 7-13	Square Cut on Pipe, 1G (Horizontal Rolled) Position	
Practice 7-14	Square Cut on Pipe, 1G (Horizontal Rolled) Position	
Practice 7-15	Square Cut on Pipe, 5G (Horizontal Fixed) Position	
Practice 7-16	Square Cut on Pipe, 2G (Vertical) Position	

Chapter 8

Practice 8-1	Flat, Straight Cuts in Thin Plate	. 209
Practice 8-2	Flat, Straight Cuts in Thick Plate	. 210
Practice 8-3	Flat Cutting Holes	. 211
Practice 8-4	Beveling of a Plate	. 213
Practice 8-5	U-Grooving of a Plate	. 214
Practice 8-6	Cutting Round Stock.	. 215
Practice 8-7	Beveling Pipe.	

Chapter 9

Practice 9-1	Air Carbon Arc Straight U-Groove in the Flat Position	
Practice 9-2	Air Carbon Arc Edge J-Groove in the Flat Position	
Practice 9-3	Air Carbon Arc Back Gouging in the Flat Position	231
Practice 9-4	Air Carbon Arc Weld Removal in the Flat Position	

Chapter 11

Practice 11-1	GMAW Equipment Setup	268
Practice 11-2	Threading GMAW Wire	271
Experiment 11-1	Setting Wire-Feed Speed	271
Experiment 11-2	Setting Gas Flow Rate	274
Experiment 11-3	Setting the Current	276
Experiment 11-4	Electrode Extension	277
Experiment 11-5	Welding Gun Angle	278
Experiment 11-6	Effect of Shielding Gas Changes	280
Practice 11-3	Stringer Beads Using the Short-Circuiting Metal Transfer Method in the Flat Position	283
Practice 11-4	Flat Position Butt Joint, Lap Joint, and Tee Joint	283
Practice 11-5	Flat Position Butt Joint with 100% Penetration	284
Practice 11-6	Stringer Bead at a 45° Vertical Up Angle	
Practice 11-7	Stringer Bead in the Vertical Up Position	
Practice 11-8	Butt Joint, Lap Joint, and Tee Joint in the Vertical Up Position at a 45° Angle	288
Practice 11-9	Butt Joint in the Vertical Up Position with 100% Penetration	
Practice 11-10	Stringer Bead at a 45° Vertical Down Angle.	
Practice 11-11	Stringer Bead in the Vertical Down Position	
Practice 11-12	Butt Joint, Lap Joint, and Tee Joint in the Vertical Down Position	
Practice 11-13	Butt Joint in the Vertical Down Position with 100% Penetration	289
Practice 11-14	Horizontal Stringer Bead at a 45° Angle	
Practice 11-15	Stringer Bead in the Horizontal Position	290
Practice 11-16	Butt Joint, Lap Joint, and Tee Joint in the Horizontal Position.	290
Practice 11-17	Butt Joint in the Horizontal Position with 100% Penetration	290
Practice 11-18	Stringer Bead Overhead Position	291
Practice 11-19	Butt Joint, Lap Joint, and Tee Joint in the Overhead Position	
Practice 11-20	Butt Joint in the Overhead Position with 100% Penetration	292
Practice 11-21	Stringer Bead.	293

xxviii

Index of Experiments and Practices

Practice 11-22	Butt Joint	293
Practice 11-23	Butt Joint with 100% Penetration	293
Practice 11-24	Tee Joint and Lap Joint in the 1F Position	295
Practice 11-25	Tee Joint and Lap Joint in the 2F Position	295
Practice 11-26	Stringer Bead, 1G Position.	296
Practice 11-27	Butt Joint, Lap Joint, and Tee Joint Using the Axial Spray Method	296
Practice 11-28	Butt Joint and Tee Joint	296

Chapter 13

Practice 13-1	FCAW Equipment Setup	22
Practice 13-2	Threading FCAW Wire	23
Practice 13-3	Stringer Beads Flat Position	24
Practice 13-4	Square Butt Joint 1G	27
Practice 13-5	V-Groove Butt Joint 1G	29
Practice 13-6	Lap Joint and Tee Joint 1F	33
Practice 13-7	Butt Joint at a 45° Vertical Up Angle	33
Practice 13-8	Square Groove Butt Joint 3G	
Practice 13-9	V-Groove Butt Joint 3G	33
Practice 13-10	Fillet Weld Joint at a 45° Vertical Up Angle	35
Practice 13-11	Lap Joint and Tee Joint 3F	36
Practice 13-12	Lap Joint and Tee Joint 2F	36
Practice 13-13	Lap and Tee Joint 2F	38
Practice 13-14	Stringer Bead at a 45° Horizontal Angle	38
Practice 13-15	Bevel Butt Joint 2G	38
Practice 13-16	V-Groove Butt Joint 2G	38
Practice 13-17	Square Butt Joint 4G	40
Practice 13-18	V-Groove Butt Joint 4G	40
Practice 13-19	Lap Joint and Tee Joint 4F	40
Practice 13-20	Butt Joint 1G	41
Practice 13-21	Lap Joint and Tee Joint 1F	41
Practice 13-22	Butt Joint 3G	43
Practice 13-23	Lap Joint and Tee Joint 3F	43
Practice 13-24	Lap Joint and Tee Joint 2F	44
Practice 13-25	Butt Joint 2G	44
Practice 13-26	Butt Joint 4G	44
Practice 13-27	Lap Joint and Tee Joint 4F	44
Practice 13-28	Plug Weld	

Chapter 14

Practice 14-1	Fillet Weld, 1F Position, Using GMAW, FCAW-S, and FCAW-G.	351
Practice 14-2	Fillet Weld, 2F Position, Using GMAW, FCAW-S, and FCAW-G.	353
Practice 14-3	Fillet Weld, 5F Position, Using GMAW, FCAW-S, and FCAW-G.	354
Practice 14-4	Butt Joint, 1G Position, Using GMAW, FCAW-S, and FCAW-G.	355
Practice 14-5	Butt Joint, 2G Position, Using GMAW, FCAW-S, and FCAW-G.	356
Practice 14-6	Butt Joint, 5G Position, Using GMAW, FCAW-S, and FCAW-G	356
Practice 14-7	Butt Joint, 6G Position, Using GMAW, FCAW-S, and FCAW-G	357

Chapter 15

Practice 15-1	All Positions Butt Joint, Tee Joint, and Lap Joint	361
Practice 15-2	AWS SENSE Gas Metal Arc Welding—Short-Circuit Metal Transfer (GMAW-S)	
	Workmanship Sample	362
Practice 15-3	V-Groove Butt Joint 1G.	365
Practice 15-4	Fillet Weld Tee Joint 1F	366
Practice 15-5	AWS SENSE Gas Metal Arc Welding (GMAW) Spray Transfer Workmanship Sample	367
Practice 15-6	AWS SENSE Gas Metal Arc Welding (GMAW) Spray Transfer Workmanship Sample	370
Practice 15-7	V-Groove Butt Joint 1G and 3G Positions	372
Practice 15-8	Bevel Groove Butt Joint 2G	375

Index of Experiments and Practices

Practice 15-9 Practice 15-10 Practice 15-11 AWS SENSE AWS SENSE Entry-Level Welder Workmanship Sample for Flux Cored Practice 15-12 AWS SENSE AWS SENSE Entry-Level Welder Workmanship Sample for Flux Cored Practice 15-13 AWS SENSE Gas Metal Arc Welding—Short-Circuit Metal Transfer (GMAW-S) Workmanship Sample 379 Practice 15-14 AWS SENSE AWS SENSE Entry-Level Welder Workmanship Sample for Flux Cored Practice 15-15 AWS SENSE AWS SENSE Entry-Level Welder Workmanship Sample for Flux Cored

Chapter 16

Experiment 16-1	Hand Grinding the Tungsten to the Desired Shape	394
Experiment 16-2	Removing a Contaminated Tungsten End by Breaking	396
Experiment 16-3	Melting the Tungsten End Shape	397
Experiment 16-4	Setting Up a GTA Welder	409
Experiment 16-5	Striking an Arc	411

Chapter 17

Experiment 17-1	Setting the Welding Current	. 418
Experiment 17-2	Setting Gas Flow	. 419
Practice 17-1	Stringer Beads, Flat Position, on Mild Steel	. 422
Practice 17-2	Stringer Beads, Flat Position, on Stainless Steel.	. 424
Practice 17-3	Stringer Beads, Flat Position, on Aluminum	. 424
Practice 17-4	Flat Position, Using Mild Steel, Stainless Steel, and Aluminum.	. 424
Practice 17-5	Outside Corner Joint, 1G Position, Using Mild Steel, Stainless Steel, and Aluminum	. 426
Practice 17-6	Butt Joint, 1G Position, Using Mild Steel, Stainless Steel, and Aluminum	. 426
Practice 17-7	Butt Joint, 1G Position, with Minimum Distortion, Using Mild Steel,	
	Stainless Steel, and Aluminum	
Practice 17-8	Lap Joint, 1F Position, Using Mild Steel, Stainless Steel, and Aluminum	
Practice 17-9	Tee Joint, 1F Position, Using Mild Steel, Stainless Steel, and Aluminum	. 430
Practice 17-10	Stringer Bead at a 45° Vertical Angle, Using Mild Steel, Stainless Steel, and Aluminum	. 431
Practice 17-11	Stringer Bead, 3G Position, Using Mild Steel, Stainless Steel, and Aluminum	
Practice 17-12	Butt Joint at a 45° Vertical Angle, Using Mild Steel, Stainless Steel, and Aluminum	
Practice 17-13	Butt Joint, 3G Position, Using Mild Steel, Stainless Steel, and Aluminum	
Practice 16-14	Lap Joint at a 45° Vertical Angle, Using Mild Steel, Stainless Steel, and Aluminum	
Practice 17-15	Lap Joint, 3F Position, Using Mild Steel, Stainless Steel, and Aluminum	
Practice 17-16	Tee Joint at a 45° Vertical Angle, Using Mild Steel, Stainless Steel, and Aluminum	
Practice 17-17	Tee Joint, 3F Position, Using Mild Steel, Stainless Steel, and Aluminum	
Practice 17-18	Stringer Bead at a 45° Reclining Angle, Using Mild Steel, Stainless Steel, and Aluminum	
Practice 17-19	Stringer Bead, 2G Position, Using Mild Steel, Stainless Steel, and Aluminum	
Practice 17-20	Butt Joint, 2G Position, Using Mild Steel, Stainless Steel, and Aluminum	
Practice 17-21	Lap Joint, 2F Position, Using Mild Steel, Stainless Steel, and Aluminum	
Practice 17-22	Tee Joint, 2F Position, Using Mild Steel, Stainless Steel, and Aluminum	
Practice 17-23	Stringer Bead, 4G Position, Using Mild Steel, Stainless Steel, and Aluminum.	
Practice 17-24	Butt Joint, 4G Position, Using Mild Steel, Stainless Steel, and Aluminum	
Practice 17-25	Lap Joint, 4F Position, Using Mild Steel, Stainless Steel, and Aluminum	
Practice 17-26	Tee Joint, 4F Position, Using Mild Steel, Stainless Steel, and Aluminum	. 439

Chapter 18

Practice 18-1	Tack Welding Pipe	47
Practice 18-2	Root Pass, Horizontal Rolled Position (1G) 45	50
Experiment 18-1	Repairing a Root Pass Using a Hot Pass 45	54
Practice 18-3	Stringer Bead, Horizontal Rolled Position (1G) 45	54
Practice 18-4	Weave and Lace Beads, Horizontal Rolled Position (1G)	56

xxix

ххх

Index of Experiments and Practices

Practice 18-5 Practice 18-6	Filler Pass (1G Position). 4 Cover Pass (1G Position). 4	
Practice 18-7	Stringer Bead, Horizontal Fixed Position (5G)	
Practice 18-8	Stringer Bead, Vertical Fixed Position (2G)	
Practice 18-9	Stringer Bead on a Fixed Pipe at a 45° Inclined Angle (6G Position)	
	Chapter 19	
Practice 19-1	Butt Joint, All Positions Using Mild Steel with 100% Joint Penetration to be Tested	67
Practice 19-2	Lap and Tee Joints, All Positions Using Mild Steel with 100% Root Penetration to be Tested	
Practice 19-3	Butt Joint, All Positions Using Austenitic Stainless Steel with 100% Joint Penetration to be Tested	
Practice 19-4	Lap and Tee Joints, All Positions Using Stainless Steel with 100% Root Penetration to be Tested	
Practice 19-5	Butt Joint, All Positions Using Aluminum with 100% Joint Penetration to be Tested	
Practice 19-6	Lap and Tee Joints, All Positions Using Aluminum with 100% Joint Penetration to be rested	0)
	Penetration to be Tested	69
Practice 19-7	AWS SENSE Gas Tungsten Arc Welding (GTAW) on Plain Carbon Steel Workmanship Sample 4	
Practice 19-8	AWS SENSE Gas Tungsten Arc Welding (GTAW) on Stainless Steel Workmanship Sample 4	
Practice 19-9	AWS SENSE Gas Tungsten Arc Welding (GTAW) on Aluminum Workmanship Sample 4	
Practice 19-10	AWS SENSE 2G and 5G Pipe Welds on Mild Steel Tubing with and without a Backing 4	
Practice 19-11	AWS SENSE 2G and 5G Pipe Welds on Stainless Steel Tubing with and without a Backing 4	
Practice 19-12	AWS SENSE 2G and 5G Pipe Welds on Aluminum Tubing with and without a Backing 48	
Practice 19-13	Single V-Groove Pipe Weld, 1G Position, to be Tested	
Practice 19-14	Single-V Butt Joint (5G Position) 100% Root Penetration to be Tested.	
Practice 19-15	Single-V Butt Joint (2G Position) 100% Root Penetration to be Tested.	
Practice 19-16	Single-V Butt Joint (6G Position) 100% Root Penetration to be Tested	84
	Chapter 20	
Practice 20-1	Calculate the Area Using a Calculator	
Practice 20-2	Calculate the Volume Using a Calculator	
Practice 20-3 Practice 20-4	Finding Weld Groove Volume50Finding Weld Weight of Filler Metal50	
Practice 20-4 Practice 20-5	Create a Bill of Materials	
		10
-	Chapter 21	
Practice 21-1	Reading Mechanical Drawings	
	0	28
Practice 21-2	Sketching Straight Lines	30
Practice 21-3	Sketching Straight Lines 5 Sketching Circles and Arcs 5	30 31
Practice 21-3 Practice 21-4	Sketching Straight Lines5Sketching Circles and Arcs5Sketching a Block5	30 31 32
Practice 21-3	Sketching Straight Lines5.Sketching Circles and Arcs5.Sketching a Block5.Sketch a Candlestick Holder5.	30 31 32 32
Practice 21-3 Practice 21-4 Practice 21-5	Sketching Straight Lines5Sketching Circles and Arcs5Sketching a Block5	30 31 32 32 35
Practice 21-3 Practice 21-4 Practice 21-5 Practice 21-6	Sketching Straight Lines52Sketching Circles and Arcs5Sketching a Block52Sketch a Candlestick Holder52Sketching the Parts of a Workmanship Qualification Test.52Sketching Curves and Irregular Shapes.52	30 31 32 32 35
Practice 21-3 Practice 21-4 Practice 21-5 Practice 21-6	Sketching Straight Lines5.Sketching Circles and Arcs5.Sketching a Block5.Sketch a Candlestick Holder5.Sketching the Parts of a Workmanship Qualification Test.5.	30 31 32 32 35 35
Practice 21-3 Practice 21-4 Practice 21-5 Practice 21-6 Practice 21-7	Sketching Straight Lines 5. Sketching Circles and Arcs 5. Sketching a Block 5. Sketching a Block 5. Sketch a Candlestick Holder 5. Sketching the Parts of a Workmanship Qualification Test. 5. Sketching Curves and Irregular Shapes 5. Chapter 22 Reading Welding Symbols 5.	30 31 32 32 35 35
Practice 21-3 Practice 21-4 Practice 21-5 Practice 21-6 Practice 21-7 Practice 22-1	Sketching Straight Lines 5. Sketching Circles and Arcs 5. Sketching a Block 5. Sketching a Block 5. Sketching a Block 5. Sketching the Parts of a Workmanship Qualification Test. 5. Sketching Curves and Irregular Shapes. 5. Chapter 22 Reading Welding Symbols. 5. Chapter 23	30 31 32 32 35 36 59
Practice 21-3 Practice 21-4 Practice 21-5 Practice 21-6 Practice 21-7	Sketching Straight Lines 5. Sketching Circles and Arcs 5. Sketching a Block 5. Sketching the Parts of a Workmanship Qualification Test. 5. Sketching Curves and Irregular Shapes. 5. Chapter 22 7. Reading Welding Symbols. 5. Chapter 23 5. Laying Out Square, Rectangular, and Triangular Parts 5.	30 31 32 32 35 36 559 66
Practice 21-3 Practice 21-4 Practice 21-5 Practice 21-6 Practice 21-7 Practice 22-1 Practice 22-1	Sketching Straight Lines 5. Sketching Circles and Arcs 5. Sketching a Block 5. Sketching a Block 5. Sketching a Block 5. Sketching the Parts of a Workmanship Qualification Test. 5. Sketching Curves and Irregular Shapes. 5. Chapter 22 Reading Welding Symbols. 5. Chapter 23	 30 31 32 32 335 36 559 66 69
Practice 21-3 Practice 21-4 Practice 21-5 Practice 21-6 Practice 21-7 Practice 22-1 Practice 23-1 Practice 23-2	Sketching Straight Lines 5. Sketching Circles and Arcs 5. Sketching a Block 5. Sketching a Block 5. Sketching a Block 5. Sketching a Block 5. Sketching the Parts of a Workmanship Qualification Test. 5. Sketching the Parts of a Workmanship Qualification Test. 5. Sketching Curves and Irregular Shapes. 5. Chapter 22 7. Reading Welding Symbols. 5. Chapter 23 5. Laying Out Square, Rectangular, and Triangular Parts 5. Laying Out Circles, Arcs, and Curves 5.	 30 31 32 32 35 36 59 66 69 69
Practice 21-3 Practice 21-4 Practice 21-5 Practice 21-6 Practice 21-7 Practice 22-1 Practice 23-1 Practice 23-2 Practice 23-3	Sketching Straight Lines 5. Sketching Circles and Arcs 5. Sketching a Block 5. Sketching a Block 5. Sketching a Block 5. Sketching a Block 5. Sketching the Parts of a Workmanship Qualification Test. 5. Sketching Curves and Irregular Shapes. 5. Chapter 22 7. Reading Welding Symbols. 5. Chapter 23 5. Laying Out Square, Rectangular, and Triangular Parts 5. Nesting Layout 5.	 30 31 32 32 335 36 559 66 69 69 69 670
Practice 21-3 Practice 21-4 Practice 21-5 Practice 21-6 Practice 21-7 Practice 22-1 Practice 23-1 Practice 23-2 Practice 23-3 Practice 23-4	Sketching Straight Lines 5. Sketching Circles and Arcs 5. Sketching a Block 5. Sketching the Parts of a Workmanship Qualification Test. 5. Sketching Curves and Irregular Shapes. 5. Sketching Curves and Irregular Shapes. 5. Chapter 22 Reading Welding Symbols. 5. Chapter 23 5. Laying Out Square, Rectangular, and Triangular Parts 5. Laying Out Circles, Arcs, and Curves 5. Nesting Layout 5. Bill of Materials 5. Allowing Space for the Kerf. 5.	 30 31 32 32 335 36 559 66 69 69 69 670
Practice 21-3 Practice 21-4 Practice 21-5 Practice 21-6 Practice 21-7 Practice 22-1 Practice 23-1 Practice 23-2 Practice 23-3 Practice 23-4	Sketching Straight Lines 51 Sketching Circles and Arcs 52 Sketching a Block 52 Sketching a Block 52 Sketching a Block 52 Sketching the Parts of a Workmanship Qualification Test. 52 Sketching Curves and Irregular Shapes. 52 Chapter 22 72 Reading Welding Symbols. 52 Chapter 23 54 Laying Out Square, Rectangular, and Triangular Parts 54 Laying Out Circles, Arcs, and Curves 54 Nesting Layout 54 Bill of Materials 54	 30 31 32 32 33 36 59 66 69 69 69 69 70 70

Chapter 26

Experiment 26-1	Latent and Sensible Heat.	. 630
Experiment 26-2	Temper Colors.	. 631
Experiment 26-3	Crystal Formation	. 643
Experiment 26-4	Effect of Quenching and Tempering on Metal Properties	. 644

Chapter 27

Practice 27-1	Arc Welding a Cast Iron Break with Preheating and Postheating	670
Practice 27-2	Arc Welding a Cast Iron Crack without Preheating or Postheating	671
Practice 27-3	Gas Welding a Cast Iron Break with Preheating or Postheating	672
Practice 27-4	Braze Welding a Cast Iron Crack with Preheating or Postheating	
Experiment 27-1	Identifying Metal Using a Spark Test.	675

Chapter 31

Experiment 31-1	Line Resistance	751
Experiment 31-2	Burn Rate	766
Experiment 31-3	Oxyfuel Flames	774
Practice 31-1	Setting Up an Oxyfuel Torch Set	777
Practice 31-2	Turning On and Testing a Torch	780
Practice 31-3	Lighting and Adjusting an Oxyacetylene Flame	781
Practice 31-4	Shutting Off and Disassembling Oxyfuel Welding Equipment	782

Chapter 32

Experiment 32-1	Flame Effect on Metal 788
Practice 32-1	Pushing a Molten Weld Pool
Experiment 32-2	Effect of Torch Angle and Torch Height Changes
Practice 32-2	Beading
Experiment 32-3	Effect of Rod Size on the Molten Weld Pool
Practice 32-3	Stringer Bead, Flat Position
Practice 32-4	Outside Corner Joint, Flat Position
Practice 32-5	Butt Joint, Flat Position
Practice 32-6	Butt Joint with 100% Penetration
Practice 32-7	Butt Joint with Minimum Distortion
Practice 32-8	Lap Joint, Flat Position
Practice 32-9	Tee Joint, Flat Position
Practice 32-10	Stringer Bead at a 45° Angle
Practice 32-11	Stringer Bead, Vertical Position
Practice 32-12	Butt Joint at a 45° Angle
Practice 32-13	Butt Joint, Vertical Position
Practice 32-14	Butt Joint, Vertical Position, with 100% Penetration
Practice 32-15	Lap Joint at a 45° Angle
Practice 32-16	Lap Joint, Vertical Position
Practice 32-17	Tee Joint at a 45° Angle
Practice 32-18	Tee Joint, Vertical Position
Practice 32-19	Horizontal Stringer Bead at a 45° Angle
Practice 32-20	Stringer Bead, Horizontal Position
Practice 32-21	Butt Joint, Horizontal Position
Practice 32-22	Lap Joint, Horizontal Position
Practice 32-23	Tee Joint, Horizontal Position
Practice 32-24	Stringer Bead, Overhead Position
Practice 32-25	Butt Joint, Overhead Position
Practice 32-26	Lap Joint, Overhead Position
Practice 32-27	Tee Joint, Overhead Position
Experiment 32-4	Effect of Changing Angle on Molten Weld Pool
Experiment 32-5	Stringer Bead, 1G Position
Experiment 32-6	Stops and Starts
Practice 32-28	Stringer Bead, 1G Position

xxxii

Index of Experiments and Practices

Practice 32-29	Butt Joint, 1G Position	810
Experiment 32-7	5G Position	810
Practice 32-30	Stringer Bead, 5G Position.	811
Practice 32-31	Butt Joint, 5G Position.	811
Practice 32-32	Stringer Bead, 2G Position.	811
Practice 32-33	Butt Joint, 2G Position.	
Practice 32-34	Stringer Bead, 6G Position	812
Practice 32-35	Butt Joint, 6G Position.	813

Chapter 33

Paste Range
Fluxing Action
Uniform Heating
Tinning or Phase Temperature
Brazed Stringer Bead
Brazed Butt Joint
Brazed Butt Joint with 100% Penetration
Brazed Tee Joint
Brazed Lap Joint
Brazed Lap Joint with 100% Penetration
Brazed Tee Joint, Thin to Thick Metal
Brazed Lap Joint, Thin to Thick Metal
Braze Welded Butt Joint, Thick Metal
Braze Welded Tee Joint, Thick Metal
Braze Welding to Fill a Hole
Flat Surface Buildup
Round Surface Buildup
Silver Brazing Copper Pipe, 2G Vertical Down Position
Silver Brazing Copper Pipe, 5G Horizontal Fixed Position
Silver Brazing Copper Pipe, 2G Vertical Up Position
Soldered Tee Joint
Soldered Lap Joint
Soldering Copper Pipe, 2G Vertical Down Position
Soldering Copper Pipe, 1G Position
Soldering Copper Pipe, 4G Vertical Up Position
Soldering Aluminum to Copper

Section 1

Introduction

Chapter 1 Introduction to Welding

Chapter 2 Safety in Welding

Success Story

My name is Erin Boren and I'm 21. I first learned to weld while in high school at Lakeview Centennial High School in Garland, Texas. My welding instructor was Mr. Jim Barnett. He taught me the basics of all of the welding processes. My favorite welding process was and still is GMAW. While in high school I passed the 1/2 in. thick open root V-groove guided bend test with the GMAW process.

In addition to making practice welds on a variety of differ-

ent types of metals and metal thicknesses with all of the different welding processes, Mr. Barnett had us fabricate welding projects. I made a vase, picture frame, and some other projects. My favorite project was when Mr. Barnett let me program the plasma cutter to cut out my name and a silhouette of my favorite animal. He then let me gas weld all of it together to make a nameplate. I loved being able to make these welded projects. It was really fun cutting out the parts and fitting them together so I could weld them up.

Of all my high school courses I loved my welding classes most. Welding classes gave me a chance to learn a skill that I have truly enjoyed.

I have always loved the water. My life goal is to become an underwater welder, so I took classes to become certified as a scuba diver. In addition I worked at Surf and Swim during the summers. Not all of my time was spent as fun in the sun; I used the flux core process to build a long section of security fence. The fence owner said she "loved it" which made me feel proud of my work.

I'm currently enrolled in welding classes at Eastfield College in Mesquite, Texas. My first welding class was a welding 6-week survey course that covered all of the welding processes. Currently my welding instructor is Mr. Jeff Mitchell. He helped me develop my welding skills, and I passed the 4G (overhead) open root V-groove bend test in 3/8 in. plate with the shielded metal arc welding process.

My next class will be the AWS SENSE Level I certification. Mr. Mitchell feels I'm ready to pass both the workmanship qualification test and the V-groove certification. I'm looking forward to the challenge.

One of the highlights of my welding career was being asked by Mr. Mitchell to help Larry Jeffus take the cover photo for this textbook. I'm sure with all of my welding equipment and PPE on you might not recognize me, but I know it's me and that's good enough.

Erin's high school teacher, Mr. Barnett said, "There's no greater thrill than having a student like Erin become a successful welder." Her college professor Mr. Mitchell said, "Erin's great work ethic, positive can-do attitude, and friendly personality have equipped her very well. With her outstanding welding skills, I expect her to be very successful in the future."

Chapter 1 Introduction to Welding

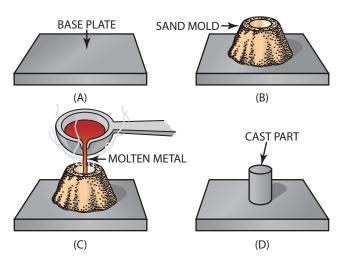
OBJECTIVES

After completing this chapter, the student should be able to

- explain how each one of the major welding processes works.
- list the factors that must be considered before a welding process is selected.
- discuss the history of welding.
- describe briefly the responsibilities and duties of the welder in various welding positions.
- define the terms weld, forge welding, resistance welding, fusion welding, coalescence, and certification.

KEY TERMS

American Welding Society	fusion welding	qualification
(AWS)	gas metal arc welding (GMAW)	resistance welding
automated operation	gas tungsten arc welding	semiautomatic operation
automatic operation	(GTAW)	shielded metal arc welding
certification	machine operation	(SMAW)
coalescence	manual operation	torch or oxyfuel brazing (TB)
flux cored arc welding (FCAW)	oxyfuel gas cutting (OFC)	weld
forge welding	oxyfuel gas welding (OFW)	welding


INTRODUCTION

As methods of joining materials improved through the ages, so did the environment and mode of living for humans. Materials, tools, and machinery improved as civilization developed.

Fastening together the parts of work implements began when someone attached a stick to a stone to make a spear or axe. Egyptians used stone tools to create temples and pyramids that were fastened together with an adhesive of gypsum mortar. Some walls that still exist depict a spaceoriented figure that was as appropriate then as now—an ibis-headed god named Thoth who protected the moon and was believed to cruise space in a vessel.

Other types of adhesives were used to join wood and stone in ancient times. However, it was a long time before the ancients discovered a method for joining metals. Workers in the Bronze and Iron Ages began to solve the problems of forming, casting, and alloying metals. **Welding** metal surfaces was a problem that long puzzled metalworkers of that time period. Early metal-joining methods included processes such as forming a sand mold on top of a piece of metal and casting the desired shape directly on the base metal so that both parts fused together, forming a single piece of metal, **Figure 1-1**. Another metal-joining method used in early years was to place two pieces of metal close together and pour molten metal between them. When the edges of the base metal melted, the flow of metal was then dammed up and allowed to harden, **Figure 1-2**.

This bronze goat statue at the Qingyang Taoist Temple in Chengdu, China was cast more than 1500 years ago and

FIGURE 1-1 Direct casting: (A) base plate to have part cast on it, (B) sand molded into shape desired, (C) pouring hot metal into mold, and (D) part cast is now part of the base plate.

FIGURE 1-2 Flow welding: (A) two pieces of metal plate, (B) sand dams to hold molten metal in place, (C) molten metal poured between metal plates, and (D) finished welded plate.

repaired with braze welding approximately 1000 years ago, **Figure 1-3**.

The Industrial Revolution, from 1750 to 1850, introduced a method of joining pieces of iron together known as **forge welding** or hammer welding. This process involved the use of a forge to heat the metal to a soft, plastic temperature. The ends of the iron were then placed together and hammered until fusion took place.

Forge welding remained as the primary welding method until Elihu Thomson, in the year 1886, developed the **resistance welding** technique. This technique provided a more reliable and faster way of joining metal than did previous methods.

As techniques were further developed, riveting was replaced in the United States and Europe by **fusion** welding. At that time the welding process was considered to be vital to military security. Welding repairs to the ships damaged during World War I were done in great secrecy. Even today some aspects of welding are closely guarded secrets.

Since the end of World War I, many welding methods have been developed for joining metals. These various welding methods play an important role in the expansion and production of the welding industry. Welding has become a dependable, efficient, and economical method for joining metal.

FIGURE 1-3 Bronze goat statue in Chengdu, China cast more than 1,500 years ago and repaired with braze welding about 1,000 years ago.

Welding Terminology

The use of regional terms by skilled workers is a common practice in all trade areas, including welding. As an example, oxyacetylene welding is one part of the larger group of processes known as **oxyfuel gas welding (OFW)**. Some of the names used to refer to oxyacetylene welding (OAW) include *gas welding* and *torch welding*. **Shielded metal arc welding (SMAW)** is often called *stick welding*, *rod welding*, or just *welding*. As you begin your work career you will learn the various names used in your area, but you should always keep in mind and use the more formal terms whenever possible.

WELDING DEFINED

A weld is defined by the American Welding Society (AWS) as "a localized coalescence (the fusion or growing together of the grain structure of the materials being welded) of metals or nonmetals produced either by heating the materials to the required welding temperatures, with or without the application of pressure, or by the application of pressure alone, and with or without the use of filler materials." Welding is defined as "a joining process that produces coalescence of materials by heating them to the welding temperature, with or without the application of pressure or by the application of pressure alone, and with or without the application of pressure or by the application of pressure alone, and with or without the use of filler metal." In less technical language, a weld is made when separate pieces of material to be joined combine and form one piece when

- enough heat is applied to raise the temperature high enough to cause softening or melting and the pieces flow together,
- enough pressure is used to force the pieces together so that the surfaces coalesce, or
- enough heat and pressure are used together to force the separate pieces of material to combine and form one piece.

A filler material may or may not be added to the joint to form a completed weld joint. It is also important to note that the word *material* is used because today welds can be made from a growing list of materials such as plastic, glass, and ceramics.

USES OF WELDING

Modern welding techniques are used in the construction of numerous products, **Figure 1-4** and **Figure 1-5**. Ships, buildings, bridges, and recreational rides are fabricated by welding processes. Welding is often used to produce the machines that are used to manufacture new products.

FIGURE 1-4 Space shuttle being made ready for its launch into space. Notice the large welded support structure used to prepare the shuttle for launch.

Welding has made it possible for airplane manufacturers to meet the design demands of strength-to-weight ratios for both commercial and military aircraft.

The exploration of space would not be possible without modern welding techniques. From the very beginning of early rockets to today's aerospace industry, welding has played an important role. The space shuttle's construction required the improvement of welding processes. Many of these improvements have helped improve our daily lives.

Welding, brazing, and cutting experiments were conducted aboard the Skylab from May 1973 to February 1974. Today welding, brazing, and cutting experiments are often conducted aboard the International Space Station. We built the International Space Station by taking large parts into space and assembling them. Someday welders will be required to build even larger structures in the vacuum of space. **Figure 1-6** is a welding machine designed to be used in space. **Figure 1-7** shows cosmonaut Svetlana Savitskaya, the first woman to space walk and the first person to use a welding and cutting machine in open space. The specialized welder was developed at the E.O. Paton Electric Welding Institute. As the welding techniques are developed for this major project, we will see them being used here on Earth to improve our world.

Welding is used extensively in the manufacture of automobiles, farm equipment, home appliances, computer components, mining equipment, and construction equipment. Railway equipment, furnaces, boilers, air-conditioning units, and hundreds of other products we use in our daily lives are also joined together by some type of welding process.

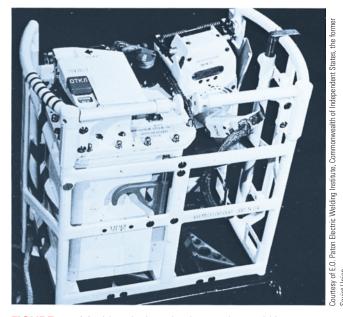
Items ranging from dental braces to telecommunication satellites are assembled by welding. Very little in our modern world is not produced using some type of welding process.

Welded sculpture, Seattle, Washington.

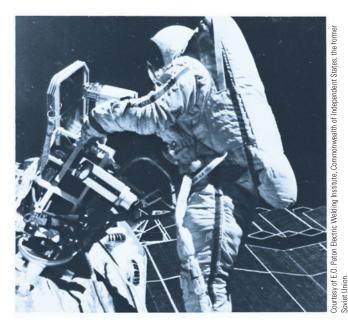
Roller coaster at Silver Dollar City, Branson, Missouri.

Roller coaster at Silver Dollar City, Branson, Missouri. FIGURE 1-5 Welded joints are a critical component of structures.

Spiral staircase in Missouri City, Texas.



Voyager of the Sea, Haiti.



Voyager of the Sea dining room.

arry Jeffu

FIGURE 1-6 Machine designed to be used to weld in space.

FIGURE 1-7 A cosmonaut makes a weld outside a space ship.

WELDING AND CUTTING PROCESSES

Welding processes differ greatly in the manner in which heat, pressure, or both heat and pressure are applied and in the type of equipment used. **Table 1-1** lists various welding and allied processes. One hundred twenty-one welding processes are listed, all of which require hammering, pressing, or rolling to affect the coalescence in the weld joint. Other methods bring the metal to a fluid state, and the edges flow together.

The most popular welding processes are as follows: oxyacetylene welding (OAW); shielded metal arc welding (SMAW), often called stick welding; **gas tungsten arc** welding (GTAW); gas metal arc welding (GMAW); flux cored arc welding (FCAW); and torch or oxyfuel brazing (TB). The two most popular thermal cutting processes are oxy-acetylene cutting (OAC) and plasma arc cutting (PAC).

WELDING PROCESSES

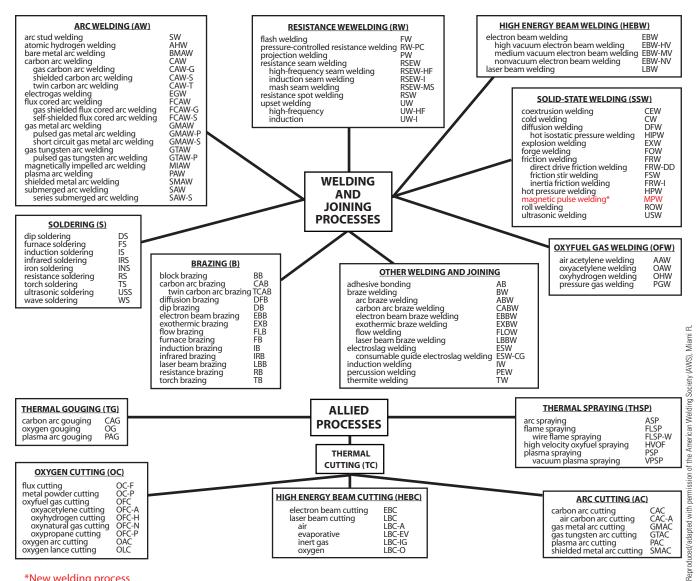
Oxyacetylene Welding, Brazing, and Cutting

Oxyacetylene welding (OAW) and torch brazing (TB) can be done with the same equipment, and **oxyfuel gas cutting** (**OFC**) uses very similar equipment, **Figure 1-8**.

In OF welding and TB a high-temperature flame is produced at the torch tip by burning oxygen and a fuel gas. The most common fuel gas is acetylene; however, other combinations of oxygen and fuel gases (OF) can be used for welding, such as hydrogen, MAPP, or propane. In OF welding, the base metal is melted and a filler metal may be added to reinforce the weld. No flux is required to make an OF weld of steel.

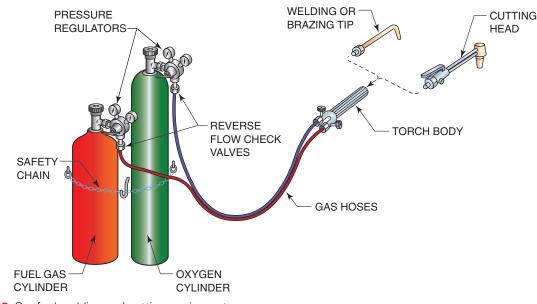
In TB, the metal is heated to a sufficient temperature but below its melting point so that a brazing alloy can be melted and bond to the hot base metal. A flux may be used to help the brazing alloy bond to the base metal. Both OF welding and TB are used primarily on smaller, thinnergauge metals.

Shielded Metal Arc Welding (SMAW)


Shielded metal arc welding (SMAW) uses a consumable stick electrode that conducts the welding current from the electrode holder to the work, and as the arc melts the end of the electrode away, it becomes part of the weld metal. Stick electrodes are available in lengths of 12 in., 14-in., and 18 in. (300 mm, 350 mm, and 450 mm). The welding arc vaporizes the solid flux that covers the electrode so that it forms an expanding gaseous cloud to protect the molten weld metal. In addition to fluxes protecting molten weld metal, they also perform a number of beneficial functions for the weld, depending on the type of electrode being used.

SMA welding equipment can be very basic as compared to other welding processes. It can consist of a welding transformer and two welding cables with a work clamp and electrode holder, **Figure 1-9**. There are more types and sizes of SMA welding electrodes than there are filler metal types and sizes for any other welding process. This wide selection of filler metal allows welders to select the best electrode type and size to fit their specific welding job requirements. Therefore, a wide variety of metal types and metal thicknesses can be joined with one machine.

Gas Tungsten Arc Welding (GTAW)


Gas tungsten arc welding (GTAW) uses a nonconsumable electrode made of tungsten. In GTA welding the arc between the electrode and the base metal melts

Section 1 Introduction

*New welding process

TABLE 1-1 Master Chart of Welding, Joining, and Allied Processes

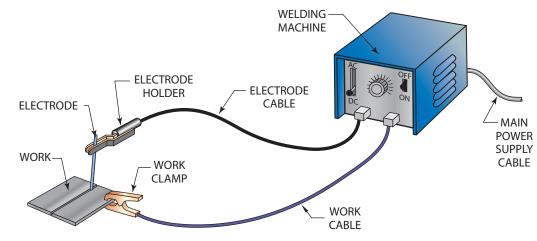


FIGURE 1-9 Shielded metal arc welding equipment.

the base metal and the end of the filler metal as it is manually dipped into the molten weld pool. A shielding gas flowing from the gun nozzle protects the molten weld metal from atmospheric contamination. A foot or thumb remote control switch may be added to the basic GTA welding setup to allow the welder better control, **Figure 1-10**. This remote control switch is often used to start and stop the welding current as well as make adjustments in the power level.

GTA welding is the cleanest of all the manual welding processes. But because there is no flux used to clean the weld in GTA welding, all surface contamination, such as oxides, oil, dirt, and others, must be cleaned from the part being welded and the filler metal so they do not contaminate the weld. Even though GTA welding is slower and requires a higher skill level as compared to other manual welding processes, it is still in demand because it can be used to make extremely high-quality welds in applications where weld integrity is critical. And there are metal alloys that can be joined only with the GTA welding process.

Gas Metal Arc Welding (GMAW)

Gas metal arc welding (GMAW) uses a solid electrode wire that is continuously fed from a spool, through the welding cable assembly, and out through the gun. A shielding gas flows through a separate tube in the cable assembly, out of the welding gun nozzle, and around the electrode wire. The welding power flows through a cable in the cable assembly and is transferred to the electrode wire at the welding gun. The GMA weld is produced as the arc melts the end of the continuously fed filler electrode wire and the surface of the base metal. The molten electrode metal transfers across the arc and becomes part of the weld. The gas shield flows out of

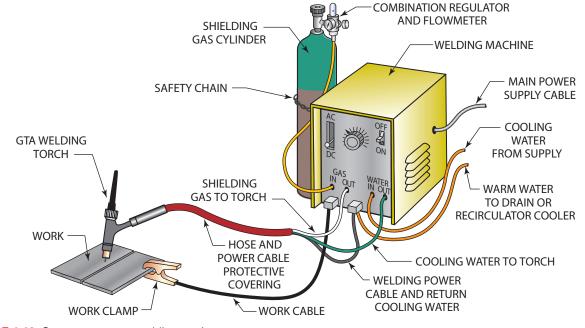


FIGURE 1-10 Gas tungsten arc welding equipment.